These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 7175608)

  • 1. Temperature-dependent fatty acyl group changes in phospholipids of 37 C-adapted Leishmania donovani promastigotes.
    Beach DH; Holz GG; Semprevivo LH; Honigberg BM
    J Parasitol; 1982 Dec; 68(6):1004-9. PubMed ID: 7175608
    [No Abstract]   [Full Text] [Related]  

  • 2. [The new approach to the role of phospholipid fatty acids: transfer of the electric charge in the membrane monolayer].
    Zabelinskiĭ SA; Chebotareva MA; Krivchenko AI
    Zh Evol Biokhim Fiziol; 2000; 36(3):202-9. PubMed ID: 11075440
    [No Abstract]   [Full Text] [Related]  

  • 3. Membrane lipid homeostasis in bacteria.
    Zhang YM; Rock CO
    Nat Rev Microbiol; 2008 Mar; 6(3):222-33. PubMed ID: 18264115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporation of [1-14C]acetate into fatty acids and aliphatic moieties of glycerolipids in Leishmania donov ani promastigotes.
    Jacobs G; Herrmann H; Gercken G
    Comp Biochem Physiol B; 1982; 73(2):367-73. PubMed ID: 7172630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The theory of homeoviscous adaptation of membranes applied to deep-sea animals.
    Macdonald AG; Cossins AR
    Symp Soc Exp Biol; 1985; 39():301-22. PubMed ID: 3938881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of thiastearic acids on growth and on dihydrosterculic acid and other phospholipid fatty acyl groups of Leishmania promastigotes.
    Beach DH; Pascal RA; Holz GG
    Mol Biochem Parasitol; 1989 Jun; 35(1):57-66. PubMed ID: 2761573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in mitochondrial oxidative capacities during thermal acclimation of rainbow trout Oncorhynchus mykiss: roles of membrane proteins, phospholipids and their fatty acid compositions.
    Kraffe E; Marty Y; Guderley H
    J Exp Biol; 2007 Jan; 210(Pt 1):149-65. PubMed ID: 17170158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental regulation of proline transport in Leishmania donovani.
    Mazareb S; Fu ZY; Zilberstein D
    Exp Parasitol; 1999 Apr; 91(4):341-8. PubMed ID: 10092478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modifications in membrane fatty acid composition of Salmonella typhimurium in response to growth conditions and their effect on heat resistance.
    Alvarez-Ordóñez A; Fernández A; López M; Arenas R; Bernardo A
    Int J Food Microbiol; 2008 Apr; 123(3):212-9. PubMed ID: 18313782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Escherichia coli membrane fluidity as detected by excimerization of dipyrenylpropane: sensitivity to the bacterial fatty acid profile.
    Mejía R; Gómez-Eichelmann MC; Fernández MS
    Arch Biochem Biophys; 1999 Aug; 368(1):156-60. PubMed ID: 10415123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptation of the psychrotroph Arthrobacter chlorophenolicus A6 to growth temperature and the presence of phenols by changes in the anteiso/iso ratio of branched fatty acids.
    Unell M; Kabelitz N; Jansson JK; Heipieper HJ
    FEMS Microbiol Lett; 2007 Jan; 266(2):138-43. PubMed ID: 17233723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of membrane protein function by bilayer lipids.
    Smith AD; Stubbs CD
    Basic Res Cardiol; 1987; 82 Suppl 1():93-7. PubMed ID: 3311012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of membrane lipid bilayer structure during salinity adaptation: a study with the gill epithelial cell membranes of Oreochromis niloticus.
    Shivkamat P; Roy R
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Sep; 142(1):28-36. PubMed ID: 16000254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatty acid modification and membrane lipids.
    Wahle KW
    Proc Nutr Soc; 1983 Jun; 42(2):273-87. PubMed ID: 6351085
    [No Abstract]   [Full Text] [Related]  

  • 15. Fatty acids can substitute the HIV fusion peptide in lipid merging and fusion: an analogy between viral and palmitoylated eukaryotic fusion proteins.
    Lev N; Shai Y
    J Mol Biol; 2007 Nov; 374(1):220-30. PubMed ID: 17919659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of membrane lipid fatty acids in cold adaptation.
    Chintalapati S; Kiran MD; Shivaji S
    Cell Mol Biol (Noisy-le-grand); 2004 Jul; 50(5):631-42. PubMed ID: 15559979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The role of saturated and unsaturated fatty acids in the repair of the lipid bilayer of photoreceptor membranes in photodamage: the possible mechanism of adaptation].
    Tiurina IuIu; Tiurin VA; Furaev VV; Rychkova MP; Etingof RN
    Zh Evol Biokhim Fiziol; 1998; 34(2):185-90. PubMed ID: 9703665
    [No Abstract]   [Full Text] [Related]  

  • 18. Microdynamics of the phospholipid bilayer in cardiomyopathic hamster heart cell membrane.
    Okamoto H; Kawaguchi H; Sano H; Kageyama K; Kudo T; Koyama T; Kitabatake A
    J Mol Cell Cardiol; 1994 Feb; 26(2):211-8. PubMed ID: 8006982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Bacillus subtilis desaturase: a model to understand phospholipid modification and temperature sensing.
    Mansilla MC; de Mendoza D
    Arch Microbiol; 2005 May; 183(4):229-35. PubMed ID: 15711796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating fatty acids inserted into magnetically aligned phospholipid bilayers using EPR and solid-state NMR spectroscopy.
    Nusair NA; Tiburu EK; Dave PC; Lorigan GA
    J Magn Reson; 2004 Jun; 168(2):228-37. PubMed ID: 15140432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.