These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 7176503)
1. [Oxidative enzyme activity of the tricarboxylic acid cycle in rat skeletal muscles in hypokinesia]. Ganin IuA Kosm Biol Aviakosm Med; 1982; 16(6):37-41. PubMed ID: 7176503 [TBL] [Abstract][Full Text] [Related]
2. [Activity of oxidative enzymes of the tricarboxylic acid cycle in the liver of rats during hypokinesia]. Ganin IuA Kosm Biol Aviakosm Med; 1983; 17(1):67-71. PubMed ID: 6843075 [TBL] [Abstract][Full Text] [Related]
3. [Changes in the mitochondrial oxidative enzyme activity in the skeletal muscles od rats during the recovery period after hypokinesia of varying duration]. Potapov PP Kosm Biol Aviakosm Med; 1989; 23(5):65-7. PubMed ID: 2593611 [TBL] [Abstract][Full Text] [Related]
4. Inhibition of Krebs cycle and activation of glyoxylate cycle in the course of chronological aging of Saccharomyces cerevisiae. Compensatory role of succinate oxidation. Samokhvalov V; Ignatov V; Kondrashova M Biochimie; 2004 Jan; 86(1):39-46. PubMed ID: 14987799 [TBL] [Abstract][Full Text] [Related]
5. [Activity of oxidative enzymes of the tricarboxylic acid cycle in rat myocardium in hypokinesia]. Ganin IuA Kardiologiia; 1983 Sep; 23(9):87-90. PubMed ID: 6645199 [TBL] [Abstract][Full Text] [Related]
6. [Dehydrogenase activity in skeletal muscles of rats after long-term exposure to weightlessness]. Buravkova LB; Mailian ES Biull Eksp Biol Med; 1988 May; 105(5):538-40. PubMed ID: 3382728 [TBL] [Abstract][Full Text] [Related]
7. [Changes in the activities of NAD- and NADP-specific isocitrate dehydrogenases in the brain and liver during the postembryonic development of animals]. Prokhorova MI; Putilina FE; Eshchenko ND Vopr Biokhim Mozga; 1974; 9():211-8. PubMed ID: 4157232 [TBL] [Abstract][Full Text] [Related]
8. Inducibility of NADP-specific isocitrate dehydrogenase with endurance training in skeletal muscle. Lawler JM; Powers SK; Criswell DS Acta Physiol Scand; 1993 Oct; 149(2):177-81. PubMed ID: 8266807 [TBL] [Abstract][Full Text] [Related]
9. [Activity of Krebs cycle oxidative enzymes in the brain in hypothermia]. Volzhina-Atabegova NG Vopr Med Khim; 1979; 25(3):308-11. PubMed ID: 452497 [TBL] [Abstract][Full Text] [Related]
10. Isocitrate dehydrogenase activity and its regulation by estradiol in tissues of rats of various ages. Yadav RN Cell Biochem Funct; 1988 Jul; 6(3):197-202. PubMed ID: 3409480 [TBL] [Abstract][Full Text] [Related]
11. [Activity of NAD- and NADP-dependent malate dehydrogenase isoenzymes in the myocardium of rabbits with alloxan diabetes]. Dagaeva LN Biull Eksp Biol Med; 1975 Jul; 80(7):43-5. PubMed ID: 6094 [TBL] [Abstract][Full Text] [Related]
12. Chemopreventive efficacy of selenium against N-nitrosodiethylamine-induced hepatoma in albino rats. Thirunavukkarasu C; Singh JP; Selvendiran K; Sakthisekaran D Cell Biochem Funct; 2001 Dec; 19(4):265-71. PubMed ID: 11746207 [TBL] [Abstract][Full Text] [Related]
13. Proton-translocating transhydrogenase and NAD- and NADP-linked isocitrate dehydrogenases operate in a substrate cycle which contributes to fine regulation of the tricarboxylic acid cycle activity in mitochondria. Sazanov LA; Jackson JB FEBS Lett; 1994 May; 344(2-3):109-16. PubMed ID: 8187868 [TBL] [Abstract][Full Text] [Related]
14. [Succinate dehydrogenase and cytochrome oxidase activity in rat tissues during prolonged hypokinesia]. Smirnov VV; Potapov PP Kosm Biol Aviakosm Med; 1981; 15(6):69-71. PubMed ID: 6273647 [TBL] [Abstract][Full Text] [Related]
15. Modulation of tricarboxylic acid cycle dehydrogenases during hepatocarcinogenesis induced by hexachlorocyclohexane in mice. Bhatt DK; Bano M Exp Toxicol Pathol; 2009 Jul; 61(4):325-32. PubMed ID: 18951770 [TBL] [Abstract][Full Text] [Related]
16. [Effect of trace metals on cell morphology, enzyme activation, and production of citric acid in a strain of Aspergillus wentii]. Majolli MV; Aguirre SN Rev Argent Microbiol; 1999; 31(2):65-71. PubMed ID: 10425661 [TBL] [Abstract][Full Text] [Related]
17. Effect of Ca2+ on the activity of mitochondrial NADP-specific isocitrate dehydrogenase from rabbit adrenals. Strumiło E Acta Biochim Pol; 1995; 42(3):325-8. PubMed ID: 8588483 [TBL] [Abstract][Full Text] [Related]
18. [Stimulation of mitochondrial oxidative enzymes in acute cooling and its catecholamine mechanisms]. Kulinskiĭ VI; Medvedev AI; Kuntsevich AK Vopr Med Khim; 1986; 32(5):84-8. PubMed ID: 3022485 [TBL] [Abstract][Full Text] [Related]
19. Glycation-induced inactivation of NADP(+)-dependent isocitrate dehydrogenase: implications for diabetes and aging. Kil IS; Lee JH; Shin AH; Park JW Free Radic Biol Med; 2004 Dec; 37(11):1765-78. PubMed ID: 15528036 [TBL] [Abstract][Full Text] [Related]
20. Involvement of enzymes of amino acid metabolism and tricarboxylic acid cycle in bovine oocyte maturation in vitro. Cetica P; Pintos L; Dalvit G; Beconi M Reproduction; 2003 Dec; 126(6):753-63. PubMed ID: 14748694 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]