These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 7177381)
21. Intracellular analysis of directional sensitivity of tectal neurons of the frog. Hoshino N; Matsumoto N Brain Res; 2003 Mar; 966(2):185-93. PubMed ID: 12618342 [TBL] [Abstract][Full Text] [Related]
22. Merging of modalities in the optic tectum: infrared and visual integration in rattlesnakes. Hartline PH; Kass L; Loop MS Science; 1978 Mar; 199(4334):1225-9. PubMed ID: 628839 [TBL] [Abstract][Full Text] [Related]
23. Functional anatomy of the tectum mesencephali of the goldfish. An explorative analysis of the functional implications of the laminar structural organization of the tectum. Meek J Brain Res; 1983 Dec; 287(3):247-97. PubMed ID: 6362772 [TBL] [Abstract][Full Text] [Related]
24. Spontaneous bursting and long-lived local correlation in normal and denervated tectum of goldfish. Lyckman AW; Meyer RL J Neurobiol; 1995 Jan; 26(1):109-18. PubMed ID: 7714520 [TBL] [Abstract][Full Text] [Related]
25. [Properties of neurons of the tectal portion of the visual system of the axolotl Ambystoma mexicanum]. Margolis SE Zh Evol Biokhim Fiziol; 1976; 12(6):560-4. PubMed ID: 1020556 [TBL] [Abstract][Full Text] [Related]
26. Postsynaptic potentials in neurons of the pigeon's optic tectum in response to afferent stimulation from the retina and other visual structures: an intracellular study. Hardy O; Leresche N; Jassik-Gerschenfeld D Brain Res; 1984 Oct; 311(1):65-74. PubMed ID: 6488045 [TBL] [Abstract][Full Text] [Related]
27. Sources of electrical transients in tectal neuropil of the frog, Rana pipiens. Grant AC; Lettvin JY Brain Res; 1991 Sep; 560(1-2):106-21. PubMed ID: 1760719 [TBL] [Abstract][Full Text] [Related]
28. Visual processing of the zebrafish optic tectum before and after optic nerve damage. McDowell AL; Dixon LJ; Houchins JD; Bilotta J Vis Neurosci; 2004; 21(2):97-106. PubMed ID: 15259561 [TBL] [Abstract][Full Text] [Related]
29. Induction of compression in the re-established visual projections on to a rotated tectal reimplant that retains its original topographic polarity within the halved optic tectum of adult goldfish. Yoon MG J Physiol; 1977 Jan; 264(2):379-410. PubMed ID: 839459 [TBL] [Abstract][Full Text] [Related]
30. Presynaptic and postsynaptic single-unit responses in the goldfish tectum as revealed by a reversible synaptic transmission blocker. Maximova E; Pushchin I; Maximov P; Maximov V J Integr Neurosci; 2012 Jun; 11(2):183-91. PubMed ID: 22744824 [TBL] [Abstract][Full Text] [Related]
31. Readjustment of retinotectal projection following reimplantation of a rotated or inverted tectal tissue in adult goldfish. Yoon MG J Physiol; 1975 Oct; 252(1):137-58. PubMed ID: 1202195 [TBL] [Abstract][Full Text] [Related]
32. Receptive field sizes of direction-selective units in the fish tectum. Damjanović I; Maximova E; Maximov V J Integr Neurosci; 2009 Mar; 8(1):77-93. PubMed ID: 19412981 [TBL] [Abstract][Full Text] [Related]
33. Laminar distribution of receptive field properties in the primary visual cortex of the mouse. Mangini NJ; Pearlman AL J Comp Neurol; 1980 Sep; 193(1):203-22. PubMed ID: 6776165 [TBL] [Abstract][Full Text] [Related]
34. Localization of optic tectal input to the ventral dendrite of the goldfish Mauthner cell. Zottoli SJ; Hordes AR; Faber DS Brain Res; 1987 Jan; 401(1):113-21. PubMed ID: 3815088 [TBL] [Abstract][Full Text] [Related]
35. Apparent discrepancy between single-unit activity and [14C]deoxyglucose labeling in optic tectum of the rattlesnake. Auker CR; Meszler RM; Carpenter DO J Neurophysiol; 1983 Jun; 49(6):1504-16. PubMed ID: 6875635 [TBL] [Abstract][Full Text] [Related]
36. Properties of the receptive fields of frog retinal ganglion cells as revealed by their response to moving stimuli. Hodos W; Dawes EA; Keating MJ Neuroscience; 1982 Jun; 7(6):1533-44. PubMed ID: 6289173 [TBL] [Abstract][Full Text] [Related]
37. Corticogeniculate neurons, corticotectal neurons, and suspected interneurons in visual cortex of awake rabbits: receptive-field properties, axonal properties, and effects of EEG arousal. Swadlow HA; Weyand TG J Neurophysiol; 1987 Apr; 57(4):977-1001. PubMed ID: 3585466 [TBL] [Abstract][Full Text] [Related]
38. Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. Schiller PH; Finlay BL; Volman SF J Neurophysiol; 1976 Nov; 39(6):1288-319. PubMed ID: 825621 [TBL] [Abstract][Full Text] [Related]
39. Visual responses of morphologically identified tectal cells in the goldfish. Guthrie DM; Sharma SC Vision Res; 1991; 31(3):507-24. PubMed ID: 1843756 [TBL] [Abstract][Full Text] [Related]
40. Morphology and laminar distribution of electrophysiologically identified cells in the pigeon's optic tectum: an intracellular study. Hardy O; Leresche N; Jassik-Gerschenfeld D J Comp Neurol; 1985 Mar; 233(3):390-404. PubMed ID: 2984257 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]