These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 7177704)

  • 21. Effects of cross-mating on susceptibility of synonymous mosquitoes, Anopheles paraliae and Anopheles lesteri to infection with nocturnally subperiodic Brugia malayi.
    Dedkhad W; Bartholomay LC; Christensen BM; Joshi D; Taai K; Hempolchom C; Saeung A
    Acta Trop; 2018 Nov; 187():65-71. PubMed ID: 30055175
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mosquito infection responses to developing filarial worms.
    Erickson SM; Xi Z; Mayhew GF; Ramirez JL; Aliota MT; Christensen BM; Dimopoulos G
    PLoS Negl Trop Dis; 2009 Oct; 3(10):e529. PubMed ID: 19823571
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relative suitability of Aedes albopictus and Aedes aegypti in North Carolina to support development of Dirofilaria immitis.
    Apperson CS; Engber B; Levine JF
    J Am Mosq Control Assoc; 1989 Sep; 5(3):377-82. PubMed ID: 2584971
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hemagglutinins in mosquitoes and their role in the immune response to Brugia malayi (Filarioidea:Nematoda) larvae.
    Nayar JK; Knight JW
    Comp Biochem Physiol A Physiol; 1997 Dec; 118(4):1321-6. PubMed ID: 9505436
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of the filarial nematode, Brugia pahangi, in Aedes aegypti mosquitoes: nondependence upon host hormones.
    Gwadz RW; Spielman A
    J Parasitol; 1974 Feb; 60(1):134-7. PubMed ID: 4814787
    [No Abstract]   [Full Text] [Related]  

  • 26. Species variation in mosquito flight-muscle damage resulting from a single filarial infection and its repercussions on a second infection.
    Beckett EB
    Parasitol Res; 1990; 76(7):606-9. PubMed ID: 2217122
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Infective larvae of Brugia: escape from mosquitoes into water and subsequent oral infectivity in jirds.
    Bosworth W; Sullivan JJ; Chernin E
    Am J Trop Med Hyg; 1976 Sep; 25(5):700-3. PubMed ID: 8999
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Changes in the susceptibility of the recipient Aedes aegypti to Brugia pahangi after passive transfer of haemolymph].
    Huang JL
    Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 1990; 8(4):253-5. PubMed ID: 2099252
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of some common infective filarial larvae in Malaysia.
    Yen PK; Zaman V; Mak JW
    J Helminthol; 1982 Mar; 56(1):69-80. PubMed ID: 7069185
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid phagocytosis and melanization of bacteria and Plasmodium sporozoites by hemocytes of the mosquito Aedes aegypti.
    Hillyer JF; Schmidt SL; Christensen BM
    J Parasitol; 2003 Feb; 89(1):62-9. PubMed ID: 12659304
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of Brugia pahangi in the flight muscles of Aedes togoi. Ultrastructural changes in the infected muscle fibers and the infecting filarial larvae.
    Kan SP; Ho BC
    Am J Trop Med Hyg; 1973 Mar; 22(2):179-88. PubMed ID: 4688414
    [No Abstract]   [Full Text] [Related]  

  • 32. Comparison of migration and encapsulation of Brugia malayi microfilariae from the midgut to the hemocoel between Anopheles quadrimaculatus and Aedes aegypti.
    Nayar JK; Knight JW
    J Invertebr Pathol; 1995 May; 65(3):295-9. PubMed ID: 7745283
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Studies on filariasis. IV. The rate of escape of the third-stage larvae of Brugia pahangi from the mouthpart of Aedes togoi during the blood meal.
    Ho BC; Lavoipierre MM
    J Helminthol; 1975 Mar; 49(1):65-72. PubMed ID: 1127218
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Melanization of
    de Carvalho GA; Ramos RAN; TrindadeMaia R; de Andrade CFS; Alves CL
    J Arthropod Borne Dis; 2018 Mar; 12(1):94-99. PubMed ID: 30018997
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The ultrastructural basis of abnormal development of Brugia pahangi in refractory Aedes aegypti.
    Lehane MJ
    Ann Trop Med Parasitol; 1978 Jun; 72(3):285-8. PubMed ID: 666399
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intracellular development of subperiodic Brugia malayi influenced by mosquito thoracic muscle cells.
    Nayar JK; Bradley TJ; Mikarts LL; Knight JW
    J Invertebr Pathol; 1993 Jul; 62(1):90-4. PubMed ID: 8105000
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intracellular melanization in the mosquito Anopheles quadrimaculatus (Diptera: Culicidae) against the filarial nematodes, Brugia spp. (Nematoda: Filarioidea).
    Nayar JK; Knight JW; Vickery AC
    J Med Entomol; 1989 May; 26(3):159-66. PubMed ID: 2724313
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flight muscle ultrastructure of susceptible and refractory mosquitoes parasitized by larval Brugia pahangi.
    Lehane MJ; Laurence BR
    Parasitology; 1977 Feb; 74(1):87-92. PubMed ID: 14324
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of Dirofilaria repens in Aedes aegypti reared in contrasting habitat.
    Sulaiman I
    Southeast Asian J Trop Med Public Health; 1983 Mar; 14(1):122-6. PubMed ID: 6612416
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vector competence of Aedes aegypti mosquitoes for filarial nematodes is affected by age and nutrient limitation.
    Ariani CV; Juneja P; Smith S; Tinsley MC; Jiggins FM
    Exp Gerontol; 2015 Jan; 61():47-53. PubMed ID: 25446985
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.