These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 7178804)

  • 41. Changes in the auditory middle latency responses during all-night sleep recording.
    Jones LA; Baxter RJ
    Br J Audiol; 1988 Nov; 22(4):279-85. PubMed ID: 3242718
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Acoustic evoked potentials of medium latency. Anesthesia induction with S-(+)-ketamine versus ketamine racemate].
    Schwender D; Faber-Züllig E; Fett W; Klasing S; Finsterer U; Peter K
    Anaesthesist; 1993 May; 42(5):280-7. PubMed ID: 8317684
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of low pass filtering on the brainstem auditory evoked potential in the rat.
    Shaw NA
    Exp Brain Res; 1987; 65(3):686-90. PubMed ID: 3556497
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mid-latency auditory evoked potentials during ketamine anaesthesia in humans.
    Schwender D; Klasing S; Madler C; Pöppel E; Peter K
    Br J Anaesth; 1993 Nov; 71(5):629-32. PubMed ID: 8251269
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Highpass filtering of auditory evoked brain stem potentials (author's transl)].
    Kiessling J; Althaus V
    Arch Otorhinolaryngol; 1981; 230(2):149-59. PubMed ID: 7295174
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Frequency composition of auditory middle responses.
    Suzuki T; Kobayashi K; Hirabayashi M
    Br J Audiol; 1983 Feb; 17(1):1-4. PubMed ID: 6860817
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of analog filtering on brain stem auditory-evoked potentials in dogs.
    Kawasaki Y; Inada S
    Am J Vet Res; 1992 Jul; 53(7):1096-100. PubMed ID: 1497176
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of different high-pass filters on the long-latency event-related auditory evoked potentials in normal human subjects and individuals infected with the human immunodeficiency virus.
    Goodin DS; Aminoff MJ; Chequer RS
    J Clin Neurophysiol; 1992 Jan; 9(1):97-104. PubMed ID: 1552013
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Power spectrum and optimal filtering for visual evoked potentials to pattern reversal.
    Skuse NF; Burke D
    Electroencephalogr Clin Neurophysiol; 1990; 77(3):199-204. PubMed ID: 1691972
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Digital filtering of on-line evoked potentials.
    Ackmann JJ; Elko PP; Wu SJ
    Int J Biomed Comput; 1979 Aug; 10(4):291-303. PubMed ID: 489157
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of increasing doses of alfentanil, fentanyl and morphine on mid-latency auditory evoked potentials.
    Schwender D; Rimkus T; Haessler R; Klasing S; Pöppel E; Peter K
    Br J Anaesth; 1993 Nov; 71(5):622-8. PubMed ID: 8251268
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of benzodiazepines on mid-latency auditory evoked potentials.
    Schwender D; Klasing S; Madler C; Pöppel E; Peter K
    Can J Anaesth; 1993 Dec; 40(12):1148-54. PubMed ID: 8281591
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Power spectral analysis and digital filtration of brain stem auditory evoked potentials in dogs.
    Kawasaki Y; Inada S
    Am J Vet Res; 1993 Nov; 54(11):1822-6. PubMed ID: 8291758
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The auditory evoked middle-latency responses (MLRs): their normative variation and generators.
    Seki H; Kimura I; Ohnuma A; Saso S; Kogure K
    Tohoku J Exp Med; 1993 Jul; 170(3):157-67. PubMed ID: 8259588
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Application of digital filtering and phase spectral analysis to middle latency response and 40Hz event related potential in central nerve system disorders].
    Harada J
    Nihon Jibiinkoka Gakkai Kaiho; 1990 Jul; 93(7):1046-54. PubMed ID: 2213362
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Anesthesia with increasing doses of sufentanil and midlatency auditory evoked potentials in humans.
    Schwender D; Weninger E; Daunderer M; Klasing S; Pöppel E; Peter K
    Anesth Analg; 1995 Mar; 80(3):499-505. PubMed ID: 7864414
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Midlatency auditory evoked potentials and purposeful movements after thiopentone bolus injection.
    Schwender D; Klasing S; Madler C; Pöppel E; Peter K
    Anaesthesia; 1994 Feb; 49(2):99-104. PubMed ID: 8129155
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Infant Cortical Auditory Evoked Potentials to Lateralized Noise Shifts Produced by Changes in Interaural Time Difference.
    Small SA; Ishida IM; Stapells DR
    Ear Hear; 2017; 38(1):94-102. PubMed ID: 27505221
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of stimulus mode on middle latency auditory evoked potentials in humans.
    Versino M; Bergamaschi R; Romani A; Callieco R; Canegalli F; Cosi V
    Boll Soc Ital Biol Sper; 1991 Apr; 67(4):395-402. PubMed ID: 1910742
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Toward a strategy for analyzing the auditory middle-latency response waveform.
    McGee T; Kraus N; Manfredi C
    Audiology; 1988; 27(2):119-30. PubMed ID: 3408395
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.