These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 7181968)

  • 1. Effects of X-band microwave exposure on rabbit erythrocytes.
    Cleary SF; Garber F; Liu LM
    Bioelectromagnetics; 1982; 3(4):453-66. PubMed ID: 7181968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave bioeffects in the erythrocyte are temperature and pO2 dependent: cation permeability and protein shedding occur at the membrane phase transition.
    Liburdy RP; Penn A
    Bioelectromagnetics; 1984; 5(2):283-91. PubMed ID: 6732882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence depolarization studies of red cell membrane fluidity. The effect of exposure to 1.0-GHz microwave radiation.
    Allis JW; Sinha BL
    Bioelectromagnetics; 1981; 2(1):13-22. PubMed ID: 7284039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Erythrocyte hemolysis by radiofrequency fields.
    Cleary SF; Liu LM; Garber F
    Bioelectromagnetics; 1985; 6(3):313-22. PubMed ID: 3836674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Letter: Exposure of rabbit erythrocytes to microwave radiation.
    Hamrick E; Zinkl JG
    Radiat Res; 1975 Apr; 62(1):164-8. PubMed ID: 1118541
    [No Abstract]   [Full Text] [Related]  

  • 6. Microwave radiation effects on the thermally driven oxidase of erythrocytes.
    Kiel JL; Erwin DN
    Int J Hyperthermia; 1986; 2(2):201-12. PubMed ID: 3794416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-line microwave blood warming of in-date human packed red blood cells.
    Pappas CG; Paddock H; Goyette P; Grabowy R; Connolly RJ; Schwaitzberg SD
    Crit Care Med; 1995 Jul; 23(7):1243-50. PubMed ID: 7600834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inter-beat intervals of cardiac-cell aggregates during exposure to 2.45 GHz CW, pulsed, and square-wave-modulated microwaves.
    Seaman RL; DeHaan RL
    Bioelectromagnetics; 1993; 14(1):41-55. PubMed ID: 8442781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwaves and the cell membrane. II. Temperature, plasma, and oxygen mediate microwave-induced membrane permeability in the erythrocyte.
    Liburdy RP; Vanek PF
    Radiat Res; 1985 May; 102(2):190-205. PubMed ID: 4070542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal haemolytic threshold of human erythrocytes.
    Checcucci A; Olmi R; Vanni R
    J Microw Power Electromagn Energy; 1985; 20(3):161-3. PubMed ID: 3851850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An investigation of the thermal and athermal effects of microwave irradiation on erythrocytes.
    Peterson DJ; Partlow LM; Gandhi OP
    IEEE Trans Biomed Eng; 1979 Jul; 26(7):428-36. PubMed ID: 457175
    [No Abstract]   [Full Text] [Related]  

  • 12. Differential response of the permeability of the rat liver canalicular membrane to sucrose and mannitol following in vivo acute single and multiple exposures to microwave radiation (2.45 GHz) and radiant-energy thermal stress.
    Lange DG; D'Antuono ME; Timm RR; Ishii TK; Fujimoto JM
    Radiat Res; 1993 Apr; 134(1):54-62. PubMed ID: 8475254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A small temperature rise may contribute towards the apparent induction by microwaves of heat-shock gene expression in the nematode Caenorhabditis Elegans.
    Dawe AS; Smith B; Thomas DW; Greedy S; Vasic N; Gregory A; Loader B; de Pomerai DI
    Bioelectromagnetics; 2006 Feb; 27(2):88-97. PubMed ID: 16342196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ascorbic acid changes in cultured rabbit lenses after microwave irradiation.
    Weiter JJ; Finch ED; Schulz W; Frattali V
    Ann N Y Acad Sci; 1975 Feb; 247():175-81. PubMed ID: 1054230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The increased passive efflux of sodium and rubidium from rabbit erythrocytes by microwave radiation.
    Olcerst RB; Belman S; Eisenbud M; Mumford WW; Rabinowitz JR
    Radiat Res; 1980 May; 82(2):244-56. PubMed ID: 7375632
    [No Abstract]   [Full Text] [Related]  

  • 16. Investigation of the effects of continuous-wave, pulse- and amplitude-modulated microwaves on single excitable cells of Chara corallina.
    Liu LM; Garber F; Cleary SF
    Bioelectromagnetics; 1982; 3(2):203-12. PubMed ID: 7126272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ocular effects of radiofrequency energy.
    Elder JA
    Bioelectromagnetics; 2003; Suppl 6():S148-61. PubMed ID: 14628311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microwave and thermal interactions with oxidative hemolysis.
    Kiel JL; Erwin DN
    Physiol Chem Phys Med NMR; 1984; 16(4):317-23. PubMed ID: 6097927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of low electrolyte media on salt loss and hemolysis of mammalian red blood cells.
    Zeidler RB; Kim HD
    J Cell Physiol; 1979 Sep; 100(3):551-61. PubMed ID: 39943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell replication rates and processes concerning antibody production in vitro are not influenced by 2.45-GHz microwaves at physiologically normal temperatures.
    van Dorp R; Marani E; Boon ME
    Methods; 1998 Jun; 15(2):151-9. PubMed ID: 9654462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.