BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 7182109)

  • 1. An application of laser Raman spectroscopy to the study of a hereditary cataractous lens; on the Raman band for a diagnostic marker of cataractous signatures.
    Iriyama K; Mizuno A; Ozaki Y; Itoh K; Matsuzaki H
    Curr Eye Res; 1982-1983; 2(7):489-92. PubMed ID: 7182109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural changes in the lens proteins of hereditary cataracts monitored by Raman spectroscopy.
    Itoh K; Ozaki Y; Mizuno A; Iriyama K
    Biochemistry; 1983 Apr; 22(8):1773-8. PubMed ID: 6849884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser Raman spectroscopic study of hereditary cataractous lenses in ICR/f-strain rat.
    Mizuno A; Kanematsu EH; Suzuki H; Ihara N
    Jpn J Ophthalmol; 1988; 32(3):281-7. PubMed ID: 3230713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raman spectra of normal and ultraviolet-induced cataractous rabbit lens.
    Thomas DM; Schepler KL
    Invest Ophthalmol Vis Sci; 1980 Aug; 19(8):904-12. PubMed ID: 7409985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aging and cataractous process of the lens detected by laser Raman spectroscopy.
    Mizuno A; Ozaki Y
    Lens Eye Toxic Res; 1991; 8(2-3):177-87. PubMed ID: 1832955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-destructive analysis of the conformational changes in human lens lipid and protein structures of the immature cataracts associated with glaucoma.
    Lin SY; Li MJ; Liang RC; Lee SM
    Spectrochim Acta A Mol Biomol Spectrosc; 1998 Sep; 54A(10):1509-17. PubMed ID: 9807241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of structural changes in the cataractous rat lens using Raman spectroscopy.
    Horikiri K; Nakajima H; Matsuura T; Narama I; Fujimoto Y; Ozaki Y
    Jikken Dobutsu; 1992 Apr; 41(2):225-30. PubMed ID: 1577084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local variation in absolute water content of human and rabbit eye lenses measured by Raman microspectroscopy.
    Huizinga A; Bot AC; de Mul FF; Vrensen GF; Greve J
    Exp Eye Res; 1989 Apr; 48(4):487-96. PubMed ID: 2714410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Freezable and non-freezable water content of cataractous human lenses.
    Bettelheim FA; Ali S; White O; Chylack LT
    Invest Ophthalmol Vis Sci; 1986 Jan; 27(1):122-5. PubMed ID: 3941033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ganglioside composition in human cataractous nuclei.
    Swindell RT; Harris H; Buchanan L; Bell C; Albers-Jackson B
    Ophthalmic Res; 1988; 20(4):232-6. PubMed ID: 3186194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative photoacoustic spectroscopy of cataractous human lenses.
    Bernini U; Reccia R; Russo P; Scala A
    J Photochem Photobiol B; 1990 Mar; 4(4):407-17. PubMed ID: 2111385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Galactose-induced cataract in rat: Raman detection of sulfhydryl decrease and water increase along an equatorial diameter.
    Cai MZ; Kuck JF; Yu NT
    Exp Eye Res; 1989 Oct; 49(4):531-41. PubMed ID: 2806422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyridine nucleotides in normal and cataractous human lenses.
    Stewart A; Augusteyn RC
    Exp Eye Res; 1984 Sep; 39(3):307-15. PubMed ID: 6499953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relative contents of sodium, potassium, and dry matter in diabetic cataractous lenses.
    Klauber A
    Acta Ophthalmol (Copenh); 1981 Feb; 59(1):45-9. PubMed ID: 7211281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of NH stretching band in Raman spectra of animal lenses.
    Barańska H; Labudzińska A
    Lens Eye Toxic Res; 1991; 8(2-3):189-94. PubMed ID: 1911635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The oxidative stress in the cataract formation].
    Obara Y
    Nippon Ganka Gakkai Zasshi; 1995 Dec; 99(12):1303-41. PubMed ID: 8571853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein alterations in age-related cataract associated with a persistent hyaloid vascular system in senescence-accelerated mouse (SAM).
    Ashida Y; Takeda T; Hosokawa M
    Exp Eye Res; 1994 Oct; 59(4):467-73. PubMed ID: 7859822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-related changes of calpain II and alpha-crystallin in the lens of hereditary cataract (Nakano) mouse.
    Yoshida H; Murachi T; Tsukahara I
    Curr Eye Res; 1985 Sep; 4(9):983-8. PubMed ID: 2998702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the nature of hereditary cataract in strain 13/N guinea pigs.
    Bettelheim FA; Churchill AC; Zigler JS
    Curr Eye Res; 1997 Sep; 16(9):917-24. PubMed ID: 9288453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on lens proteins of mice with hereditary cataract. I. Comparative studies on the chemical and immunochemical properties of the soluble proteins of cataractous and normal mouse lenses.
    Wada E; Sugiura T; Nakamura H; Tsumita T
    Biochim Biophys Acta; 1981 Feb; 667(2):251-9. PubMed ID: 7213804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.