These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 7182109)

  • 21. Determination of the state and content of water in human normal and cataractous lenses by differential scanning calorimetry.
    Nunnari JM; Williams TR; Powell DL
    Ophthalmic Res; 1986; 18(2):117-24. PubMed ID: 3737112
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biosynthesis of proteoglycans by lens epithelial cells of cataractous mouse (Nakano strain).
    Nakazawa K; Takehana M; Iwata S
    Exp Eye Res; 1985 Apr; 40(4):609-18. PubMed ID: 4007075
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Raman spectroscopic study of age-related structural changes in the lens proteins of an intact mouse lens.
    Ozaki Y; Mizuno A; Itoh K; Yoshiura M; Iwamoto T; Iriyama K
    Biochemistry; 1983 Dec; 22(26):6254-9. PubMed ID: 6661433
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Raman spectroscopic evidence for the microenvironmental change of some tyrosine residues of lens proteins in cold cataract.
    Mizuno A; Ozaki Y; Itoh K; Matsushima S; Iriyama K
    Biochem Biophys Res Commun; 1984 Mar; 119(3):989-94. PubMed ID: 6712681
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Calcium ATPase activity and membrane structure in clear and cataractous human lenses.
    Paterson CA; Zeng J; Husseini Z; Borchman D; Delamere NA; Garland D; Jimenez-Asensio J
    Curr Eye Res; 1997 Apr; 16(4):333-8. PubMed ID: 9134322
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Water fractions in normal and senile cataractous eye lenses studied by NMR.
    Rácz P; Tompa K; Pócsik I; Bánki P
    Exp Eye Res; 1983 May; 36(5):663-9. PubMed ID: 6852140
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence for the involvement of calpain in cataractogenesis in Shumiya cataract rat (SCR).
    Inomata M; Nomura K; Takehana M; Saido TC; Kawashima S; Shumiya S
    Biochim Biophys Acta; 1997 Nov; 1362(1):11-23. PubMed ID: 9434095
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Studies of the metabolism of cholesterol in lenses of hereditary cataractous mice].
    Nakanishi S
    Nippon Ganka Gakkai Zasshi; 1988 Sep; 92(9):1530-6. PubMed ID: 3213784
    [No Abstract]   [Full Text] [Related]  

  • 29. Glutathione and glutathione-related enzymes in human cataractous lenses.
    Xie PY; Kanai A; Nakajima A; Kitahara S; Ohtsu A; Fujii K
    Ophthalmic Res; 1991; 23(3):133-40. PubMed ID: 1945285
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 1H-NMR and raman studies on perforating trauma-induced cataract formation in a mouse lens.
    Nakamura K; Jung YM; Era S; Sogami M; Ozaki Y; Takasaki A
    Biochim Biophys Acta; 2000 Mar; 1474(1):23-30. PubMed ID: 10699486
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Raman spectroscopic evidence for nuclear disulfide in isolated lenses of hyperbaric oxygen-treated guinea pigs.
    Gosselin ME; Kapustij CJ; Venkateswaran UD; Leverenz VR; Giblin FJ
    Exp Eye Res; 2007 Mar; 84(3):493-9. PubMed ID: 17196965
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distribution of ferritin chains in canine lenses with and without age-related nuclear cataracts.
    Goralska M; Nagar S; Fleisher LN; McGahan MC
    Mol Vis; 2009 Nov; 15():2404-10. PubMed ID: 19956561
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural characterization of lipid membranes from clear and cataractous human lenses.
    Borchman D; Lamba OP; Yappert MC
    Exp Eye Res; 1993 Aug; 57(2):199-208. PubMed ID: 8405186
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Raman study of the lenses of spontaneously-occurring and streptozotocin-induced diabetic rats.
    Toshima S; Miyazaki H; Mizuno A
    Jpn J Ophthalmol; 1990; 34(4):436-41. PubMed ID: 2150537
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biochemical evidence for conversion to milder form of hereditary mouse cataract by different genetic background.
    Wada E; Koyama-Ito H; Matsuzawa A
    Exp Eye Res; 1991 May; 52(5):501-6. PubMed ID: 2065720
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential scanning calorimetric measurements on human lenses.
    Bettelheim FA; Christian S; Lee LK
    Curr Eye Res; 1982-1983; 2(12):803-8. PubMed ID: 7187637
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of low molecular weight fractions in human senile cataractous lens.
    Takehana M; Takemoto LJ; Iwata S
    Jpn J Ophthalmol; 1983; 27(4):585-91. PubMed ID: 6668751
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conformational changes in soluble lens proteins during the development of senile nuclear cataract.
    McNamara MK; Augusteyn RC
    Curr Eye Res; 1984 Apr; 3(4):571-83. PubMed ID: 6713956
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of lens proteins. IV. Analysis of soluble high molecular weight protein aggregates in human lenses.
    Fu SC; Su SW; Wagner BJ; Hart R
    Exp Eye Res; 1984 May; 38(5):485-95. PubMed ID: 6745324
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Differences in the four low molecular weight proteins and in the water content from the various types of human cataractous lenses (author's transl)].
    Kodama T; Kabasawa I; Sakaue E
    Nippon Ganka Gakkai Zasshi; 1982; 86(5):531-4. PubMed ID: 7113841
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.