BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 7182481)

  • 1. Partial purification of the Glycera convoluta venom components responsible for its presynaptic effects.
    Thieffry M; Bon C; Manaranche R; Saliou B; Israël M
    J Physiol (Paris); 1982; 78(4):343-7. PubMed ID: 7182481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding of a Glycera convoluta neurotoxin to cholinergic nerve terminal plasma membranes.
    Morel N; Thieffry M; Manaranche R
    J Cell Biol; 1983 Dec; 97(6):1737-44. PubMed ID: 6643576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of a Glycera convoluta neurotoxin to cholinergic nerve terminals triggers a Ca-dependent acetylcholine release.
    Thieffry M; Morel N; Manaranche R
    J Physiol (Paris); 1984; 79(4):269-74. PubMed ID: 6530669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the venom of Glycera convoluta on the spontaneous quantal release of transmitter.
    Manaranche R; Thieffry M; Israel M
    J Cell Biol; 1980 May; 85(2):446-58. PubMed ID: 6103003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partial purification of ?-glycerotoxin, a presynaptic neurotoxin from the venom glands of the polychaete annelid glycera convoluta.
    Bon C; Saliou B; Thieffry M; Manaranche R
    Neurochem Int; 1985; 7(1):63-75. PubMed ID: 20492900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Changes in the number and distribution of intramembranous particles of electric organ synaptosomes of Torpedo during synaptic activity].
    Israël M; Manaranche R; Morel N; Dedieu JC; Gulik-Krzywicki T; Lesbats B
    C R Seances Acad Sci D; 1980 Jun; 290(23):1471-4. PubMed ID: 6773684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between presynaptic membrane potential and acetylcholine release in synaptosomes from Torpedo electric organ.
    Meunier FM
    J Physiol; 1984 Sep; 354():121-37. PubMed ID: 6207289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP and adenosine inhibit transmitter release at the frog neuromuscular junction through distinct presynaptic receptors.
    Giniatullin RA; Sokolova EM
    Br J Pharmacol; 1998 Jun; 124(4):839-44. PubMed ID: 9690879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rearrangement of intramembrane particles as a possible mechanism for the release of acetylcholine.
    Israël M; Lesbats B; Manaranche R; Morel N; Gulik-Krzywicki T; Dedieu JC
    J Physiol (Paris); 1982; 78(4):348-56. PubMed ID: 6189991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The release of ATP triggered by transmitter action and its possible physiological significance: retrograde transmission.
    Israël M; Meunier FM
    J Physiol (Paris); 1978; 74(5):485-90. PubMed ID: 217996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of ion-permeable channels by the venom of the fanged bloodworm Glycera dibranchiata.
    Kagan BL; Pollard HB; Hanna RB
    Toxicon; 1982; 20(5):887-93. PubMed ID: 6294921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of tetrandrine on spontaneous and evoked release of acetylcholine at the mouse neuromuscular junction.
    Wiegand H; McIntosh LJ; Gotzsch U; Krämer U
    J Pharmacol Exp Ther; 1996 Nov; 279(2):891-901. PubMed ID: 8930197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous release of acetylcholine and ATP from stimulated cholinergic synaptosomes.
    Morel N; Meunier FM
    J Neurochem; 1981 May; 36(5):1766-73. PubMed ID: 7241136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic effects of paraoxon on transmitter release and the synaptic contribution to tolerance.
    Thomsen RH; Wilson DF
    J Pharmacol Exp Ther; 1986 Jun; 237(3):689-94. PubMed ID: 3712275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous determination by a chemiluminescent method of acetylcholine release and compartmentation in Torpedo electric organ synaptosomes.
    Israël M; Lesbats B
    J Neurochem; 1981 Dec; 37(6):1475-83. PubMed ID: 7038047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative effects of aluminum and ouabain on synaptosomal choline uptake, acetylcholine release and (Na+/K+)ATPase.
    Silva VS; Nunes MA; Cordeiro JM; Calejo AI; Santos S; Neves P; Sykes A; Morgado F; Dunant Y; Gonçalves PP
    Toxicology; 2007 Jul; 236(3):158-77. PubMed ID: 17560001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A method for testing an extended poisson hypothesis of spontaneous quantal transmitter release at neuromuscular junctions.
    Yana K; Takeuchi N; Takikawa Y; Shimomura M
    Biophys J; 1984 Sep; 46(3):323-30. PubMed ID: 6487732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of ammodytin L on miniature and endplate potentials in neuromuscular junction of frog m. cutaneus pectoris.
    Frangez R; Krizaj I; Gubensek F; Suput D
    Pflugers Arch; 2000; 440(5 Suppl):R101-2. PubMed ID: 11005629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of acetylcholine release by presynaptic nicotinic receptors at developing neuromuscular synapses.
    Fu WM; Liu JJ
    Mol Pharmacol; 1997 Mar; 51(3):390-8. PubMed ID: 9058593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Negative cross-talk between presynaptic adenosine and acetylcholine receptors.
    Shakirzyanova AV; Bukharaeva EA; Nikolsky EE; Giniatullin RA
    Eur J Neurosci; 2006 Jul; 24(1):105-15. PubMed ID: 16800865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.