These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 7183947)

  • 1. [3H]thymidine autoradiographic study in the transit part from the spinal cord to the medulla oblongata of the chick embryo--the ontogenetic relation between the reticular formation and the spinal cord.
    Kanemitsu A
    Neurosci Lett; 1982 Dec; 34(2):105-10. PubMed ID: 7183947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of early neurons in the brainstem and spinal cord: I. An autoradiographic study in the chick.
    McConnell JA; Sechrist JW
    J Comp Neurol; 1980 Aug; 192(4):769-83. PubMed ID: 7419754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Synaptogenesis and axon collaterals coming from the white matter in the upper cervical cord of the 10 day (stage 36) chick embryo--Golgi and electron microscopic studies].
    Matsuda S; Nakasone T; Kanemitsu A
    No To Shinkei; 1987 Sep; 39(9):869-77. PubMed ID: 3689607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of the precerebellar nuclei in the rat: III. The posterior precerebellar extramural migratory stream and the lateral reticular and external cuneate nuclei.
    Altman J; Bayer SA
    J Comp Neurol; 1987 Mar; 257(4):513-28. PubMed ID: 3693596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ontogenetic study of early brain stem projections to the spinal cord in the rat.
    Auclair F; BĂ©langer MC; Marchand R
    Brain Res Bull; 1993; 30(3-4):281-9. PubMed ID: 8457877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The onset and development of descending pathways to the spinal cord in the chick embryo.
    Okado N; Oppenheim RW
    J Comp Neurol; 1985 Feb; 232(2):143-61. PubMed ID: 3973087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between bioelectric activity of neurons in the gigantocellular nucleus of the medulla oblongata and spontaneous movements of chick embryo.
    Tsitsurina EA
    Bull Exp Biol Med; 2004 Feb; 137(2):117-9. PubMed ID: 15273752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation patterns of four groups of cholinergic neurons in rat cervical spinal cord: a combined tritiated thymidine autoradiographic and choline acetyltransferase immunocytochemical study.
    Phelps PE; Barber RP; Vaughn JE
    J Comp Neurol; 1988 Jul; 273(4):459-72. PubMed ID: 3209733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathway specificity of reticulospinal and vestibulospinal projections in the 11-day chicken embryo.
    Glover JC; Petursdottir G
    J Comp Neurol; 1988 Apr; 270(1):25-38, 60-1. PubMed ID: 3372737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High activity neurons in the reticular formation of the medulla oblongata: a high-resolution autoradiographic 2-deoxyglucose study.
    Duncan GE; Kaldas RG; Mitra KE; Breese GR; Stumpf WE
    Neuroscience; 1990; 35(3):593-600. PubMed ID: 2381517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Androgen target cells in spinal cord, spinal ganglia, and glycogen body of chick embryos. Autoradiographic localization.
    Reid FA; Gasc JM; Stumpf WE; Sar M
    Exp Brain Res; 1981; 44(3):243-8. PubMed ID: 7308340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histogenesis of the nuclei griseum pontis, corporis pontobulbaris and reticularis tegmenti pontis (Bechterew) in the mouse. An autoradiographic study.
    Pierce ET
    J Comp Neurol; 1966 Feb; 126(2):219-54. PubMed ID: 5935374
    [No Abstract]   [Full Text] [Related]  

  • 13. Development of the rat thalamus: III. Time and site of origin and settling pattern of neurons of the reticular nucleus.
    Altman J; Bayer SA
    J Comp Neurol; 1988 Sep; 275(3):406-28. PubMed ID: 3225345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Edinger-Westphal nucleus: projections to the brain stem and spinal cord in the cat.
    Loewy AD; Saper CB
    Brain Res; 1978 Jul; 150(1):1-27. PubMed ID: 78743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spinal projections from the medullary reticular formation of the North American opossum: heterogeneity.
    Martin GF; Cabana T; Humbertson AO; Laxson LC; Panneton WM
    J Comp Neurol; 1981 Mar; 196(4):663-82. PubMed ID: 6110678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The dorsal horn of the avian spinal cord, a re-examination.
    Martin AH; Brinkman R
    Experientia; 1970 Aug; 26(8):887-9. PubMed ID: 5452027
    [No Abstract]   [Full Text] [Related]  

  • 17. Medullary and spinal efferents of the pedunculopontine tegmental nucleus and adjacent mesopontine tegmentum in the rat.
    Rye DB; Lee HJ; Saper CB; Wainer BH
    J Comp Neurol; 1988 Mar; 269(3):315-41. PubMed ID: 2453532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Neurons of the medulla oblongata and hypothalamus projecting on the sympathetic neurons of the ventral horn of the spinal cord].
    Kade AKh; Shubich MG
    Arkh Anat Gistol Embriol; 1991; 100(7-8):25-9. PubMed ID: 1668840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclei of the solitary tract: efferent projections to the lower brain stem and spinal cord of the cat.
    Loewy AD; Burton H
    J Comp Neurol; 1978 Sep; 181(2):421-49. PubMed ID: 690272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of early neurons in the brainstem and spinal cord. II. An autoradiographic study in the mouse.
    McConnell JA
    J Comp Neurol; 1981 Aug; 200(2):273-88. PubMed ID: 7287922
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.