These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 7185259)

  • 1. Brain potentials related to voluntary sustained effort.
    Ganchev G; Popivanov D; Dimitrov B
    Acta Physiol Pharmacol Bulg; 1982; 8(4):14-22. PubMed ID: 7185259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in the Bereitschaftspotential due to subsequent voluntary autotriggered stimulus.
    Dimitrov B; Popivanov D; Gavrilenko T; Gantchev GN
    Acta Physiol Pharmacol Bulg; 1984; 10(2):64-72. PubMed ID: 6485824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain macropotentials associated with distinct phases of voluntary sustained isometric contraction in man.
    Dimitrov B; Gantchev GN; Popivanov D
    Int J Psychophysiol; 1996; 22(1-2):35-44. PubMed ID: 8799766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain potentials related to the beginning and to the termination of voluntary flexion and extension in man.
    Dimitrov B
    Int J Psychophysiol; 1985 Jul; 3(1):13-22. PubMed ID: 4044360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatigue induces greater brain signal reduction during sustained than preparation phase of maximal voluntary contraction.
    Liu JZ; Yao B; Siemionow V; Sahgal V; Wang X; Sun J; Yue GH
    Brain Res; 2005 Sep; 1057(1-2):113-26. PubMed ID: 16129419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral correlates of the "Kohnstamm phenomenon": an fMRI study.
    Duclos C; Roll R; Kavounoudias A; Roll JP
    Neuroimage; 2007 Jan; 34(2):774-83. PubMed ID: 17095251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles.
    Søgaard K; Gandevia SC; Todd G; Petersen NT; Taylor JL
    J Physiol; 2006 Jun; 573(Pt 2):511-23. PubMed ID: 16556656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boosting bit rates and error detection for the classification of fast-paced motor commands based on single-trial EEG analysis.
    Blankertz B; Dornhege G; Schäfer C; Krepki R; Kohlmorgen J; Müller KR; Kunzmann V; Losch F; Curio G
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):127-31. PubMed ID: 12899253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bereitschaftspotential and movement-related potentials: origin, significance, and application in disorders of human movement.
    Colebatch JG
    Mov Disord; 2007 Apr; 22(5):601-10. PubMed ID: 17260337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potentials recorded from neck and supraclavicular fossa during a rapid voluntary contraction of the triceps brachii muscle.
    Tanii K; Tsuji S
    Electromyogr Clin Neurophysiol; 1993 Jun; 33(4):195-204. PubMed ID: 8359125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of motor fatigue on human brain activity, an fMRI study.
    van Duinen H; Renken R; Maurits N; Zijdewind I
    Neuroimage; 2007 May; 35(4):1438-49. PubMed ID: 17408974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time to task failure differs with load type when old adults perform a submaximal fatiguing contraction.
    Hunter SK; Rochette L; Critchlow A; Enoka RM
    Muscle Nerve; 2005 Jun; 31(6):730-40. PubMed ID: 15810019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theta Burst Stimulation over the human primary motor cortex modulates neural processes involved in movement preparation.
    Ortu E; Ruge D; Deriu F; Rothwell JC
    Clin Neurophysiol; 2009 Jun; 120(6):1195-203. PubMed ID: 19410505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Failure of activation of spinal motoneurones after muscle fatigue in healthy subjects studied by transcranial magnetic stimulation.
    Andersen B; Westlund B; Krarup C
    J Physiol; 2003 Aug; 551(Pt 1):345-56. PubMed ID: 12824449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct brain activation patterns for human maximal voluntary eccentric and concentric muscle actions.
    Fang Y; Siemionow V; Sahgal V; Xiong F; Yue GH
    Brain Res; 2004 Oct; 1023(2):200-12. PubMed ID: 15374746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Movement-related cortical potentials.
    Hallett M
    Electromyogr Clin Neurophysiol; 1994; 34(1):5-13. PubMed ID: 8168458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term motor practice induces practice-dependent modulation of movement-related cortical potentials (MRCP) preceding a self-paced non-dominant handgrip movement in kendo players.
    Hatta A; Nishihira Y; Higashiura T; Kim SR; Kaneda T
    Neurosci Lett; 2009 Aug; 459(3):105-8. PubMed ID: 19427364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast and slow brain rhythms in rule/expectation violation tasks: focusing on evaluation processes by excluding motor action.
    Tzur G; Berger A
    Behav Brain Res; 2009 Mar; 198(2):420-8. PubMed ID: 19100781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial and temporal distribution enhancement of movement-related brain macropotentials.
    Filligoi GC; Fattorini L
    Comput Biomed Res; 1999 Jun; 32(3):198-208. PubMed ID: 10356302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What is the Bereitschaftspotential?
    Shibasaki H; Hallett M
    Clin Neurophysiol; 2006 Nov; 117(11):2341-56. PubMed ID: 16876476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.