These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Effect of histone acetylation on structure and in vitro transcription of chromatin. Mathis DJ; Oudet P; Wasylyk B; Chambon P Nucleic Acids Res; 1978 Oct; 5(10):3523-47. PubMed ID: 724494 [TBL] [Abstract][Full Text] [Related]
6. A study of the localization of high mobility group proteins in chromatin. Levy WB; Dixon GH Can J Biochem; 1978 Jun; 56(6):480-91. PubMed ID: 667694 [TBL] [Abstract][Full Text] [Related]
7. Segregation of rapidly acetylated histones into a chromatin fraction released from intact nuclei by the action of micrococcal nuclease. Nelson D; Covault J; Chalkley R Nucleic Acids Res; 1980 Apr; 8(8):1745-63. PubMed ID: 7433128 [TBL] [Abstract][Full Text] [Related]
8. Protein-DNA interactions in extended and condensed chromatin. Simpson RT; Polacow I Biochem Biophys Res Commun; 1973 Dec; 55(4):1078-84. PubMed ID: 4771985 [No Abstract] [Full Text] [Related]
9. Blocking by histones of accessibility to DNA in chromatin. Mirsky AE; Silverman B Proc Natl Acad Sci U S A; 1972 Aug; 69(8):2115-9. PubMed ID: 4506081 [TBL] [Abstract][Full Text] [Related]
10. DNAse I preferentially digests chromatin containing hyperacetylated histones. Nelson DA; Perry M; Sealy L; Chalkley R Biochem Biophys Res Commun; 1978 Jun; 82(4):1346-53. PubMed ID: 697799 [No Abstract] [Full Text] [Related]
11. A study of an endogenous nucleolytic reaction and of the action micrococcal nuclease and DNAase I on a salt-soluble, compact form of chromatin. Krueger RC Biochim Biophys Acta; 1978 Sep; 520(2):358-67. PubMed ID: 708740 [TBL] [Abstract][Full Text] [Related]
12. The effect of urea on staphylococcal nuclease digestion of chromatin. Jackson V; Chalkley R Biochem Biophys Res Commun; 1975 Dec; 67(4):1391-400. PubMed ID: 1201093 [No Abstract] [Full Text] [Related]
13. Nuclease digestion in between and within nucleosomes. Greil W; Igo-Kemenes T; Zachau HG Nucleic Acids Res; 1976 Oct; 3(10):2633-44. PubMed ID: 995646 [TBL] [Abstract][Full Text] [Related]
14. Histone modifications in the yeast S. Cerevisiae. Davie JR; Saunders CA; Walsh JM; Weber SC Nucleic Acids Res; 1981 Jul; 9(13):3205-16. PubMed ID: 7024912 [TBL] [Abstract][Full Text] [Related]
15. Catalytic mechanism of histone in peptide formation from phenylalanyl adenylate. Yamamoto N; Ishigami M; Kinjo M Orig Life; 1982 Dec; 12(4):355-9. PubMed ID: 7185044 [TBL] [Abstract][Full Text] [Related]
16. Non-random binding of a chemical carcinogen to the DNA in chromatin. Metzger G; Wilhelm FX; Wilhelm ML Biochem Biophys Res Commun; 1977 Apr; 75(3):703-10. PubMed ID: 856179 [No Abstract] [Full Text] [Related]
17. Physical properties of chemically acetylated rat liver chromatin. Wallace RB; Sargent TD; Murphy RF; Bonner J Proc Natl Acad Sci U S A; 1977 Aug; 74(8):3244-8. PubMed ID: 269387 [TBL] [Abstract][Full Text] [Related]
18. Activation of chromatin by acetylation of histone side chains. Marushige K Proc Natl Acad Sci U S A; 1976 Nov; 73(11):3937-41. PubMed ID: 1069278 [TBL] [Abstract][Full Text] [Related]
19. Changes in chromatin structure at the replication fork. II The DNPs containing nascent DNA and a transient chromatin modification detected by DNAase I. Galili G; Levy A; Jakob KM Nucleic Acids Res; 1981 Aug; 9(16):3991-4005. PubMed ID: 6272192 [TBL] [Abstract][Full Text] [Related]
20. Effects of thyrotropin on the phosphorylation of histones and nonhistone phosphoproteins in micrococcal nuclease-sensitive and resistant thyroid chromatin. Cooper E; Spaulding SW Endocrinology; 1983 May; 112(5):1816-22. PubMed ID: 6219868 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]