BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 7186940)

  • 1. Transepithelial transport in cell culture: stoichiometry of Na/phlorizin binding and Na/D-glucose cotransport. A two-step, two sodium model of binding and translocation.
    Misfeldt DS; Sanders MJ
    J Membr Biol; 1982; 70(3):191-8. PubMed ID: 7186940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transepithelial transport in cell culture: bioenergetics of Na-, D-glucose-coupled transport.
    Sanders MJ; Simon LM; Misfeldt DS
    J Cell Physiol; 1983 Mar; 114(3):263-6. PubMed ID: 6833401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A two sodium ion/D-glucose symport mechanism: membrane potential effects on phlorizin binding.
    Lever JE
    Biochemistry; 1984 Sep; 23(20):4697-702. PubMed ID: 6541946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transepithelial glucose transport in cell culture.
    Misfeldt DS; Sanders MJ
    Am J Physiol; 1981 Mar; 240(3):C92-5. PubMed ID: 7212056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization of the Na+-sugar cotransport system in a kidney epithelial cell line (LLC PK1).
    Rabito CA
    Biochim Biophys Acta; 1981 Dec; 649(2):286-96. PubMed ID: 7198488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transepithelial transport in cell culture: D-glucose transport by a pig kidney cell line (LLC-PK1).
    Misfeldt DS; Sanders MJ
    J Membr Biol; 1981 Mar; 59(1):13-8. PubMed ID: 7241572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ouabain-sensitive 86Rb(K) influx is linked to transepithelial Na transport in pig kidney cell line.
    Sanders MJ; Misfeldt DS
    Biochim Biophys Acta; 1982 Mar; 685(3):383-5. PubMed ID: 7066317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two substrate sites in the renal Na(+)-D-glucose cotransporter studied by model analysis of phlorizin binding and D-glucose transport measurements.
    Koepsell H; Fritzsch G; Korn K; Madrala A
    J Membr Biol; 1990 Mar; 114(2):113-32. PubMed ID: 2342089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High affinity phlorizin binding to the LLC-PK1 cells exhibits a sodium:phlorizin stoichiometry of 2:1.
    Moran A; Davis LJ; Turner RJ
    J Biol Chem; 1988 Jan; 263(1):187-92. PubMed ID: 3335496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of phlorizin and sodium with the renal brush-border membrane D-glucose transporter: stoichiometry and order of binding.
    Turner RJ; Silverman M
    J Membr Biol; 1981 Jan; 58(1):43-55. PubMed ID: 7194377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural state of the Na+/D-glucose cotransporter in calf kidney brush-border membranes. Target size analysis of Na+-dependent phlorizin binding and Na+-dependent D-glucose transport.
    Lin JT; Szwarc K; Kinne R; Jung CY
    Biochim Biophys Acta; 1984 Nov; 777(2):201-8. PubMed ID: 6148966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of phlorizin derivatives and their inhibitory effect on the renal sodium/D-glucose cotransport system.
    Lin JT; Hahn KD; Kinne R
    Biochim Biophys Acta; 1982 Dec; 693(2):379-88. PubMed ID: 7159584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarity of transport of 2-deoxy-D-glucose and D-glucose by cultured renal epithelia (LLC-PK1).
    Miller JH; Mullin JM; McAvoy E; Kleinzeller A
    Biochim Biophys Acta; 1992 Oct; 1110(2):209-17. PubMed ID: 1390850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy-dependence of phlorizin binding to isolated renal microvillus membranes. Evidence concerning the mechanism of coupling between the electrochemical Na+ gradient the sugar transport.
    Aronson PS
    J Membr Biol; 1978 Jul; 42(1):81-98. PubMed ID: 671529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phlorizin as a probe of the small-intestinal Na+,D-glucose cotransporter. A model.
    Toggenburger G; Kessler M; Semenza G
    Biochim Biophys Acta; 1982 Jun; 688(2):557-71. PubMed ID: 7201854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of Na(+)-glucose cotransport to the short-circuit current in the pigmented rabbit conjunctiva.
    Hosoya K; Kompella UB; Kim KJ; Lee VH
    Curr Eye Res; 1996 Apr; 15(4):447-51. PubMed ID: 8670745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na(+)-dependent uptake of 1,5-anhydro-D-glucitol via the transport systems for D-glucose and D-mannose in the kidney epithelial cell line, LLC-PK1.
    Saito H; Ohtomo T; Inui K
    Nihon Jinzo Gakkai Shi; 1996 Oct; 38(10):435-40. PubMed ID: 8940824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-step mechanism of phlorizin binding to the SGLT1 protein in the kidney.
    Oulianova N; Falk S; Berteloot A
    J Membr Biol; 2001 Feb; 179(3):223-42. PubMed ID: 11246421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of sodium-coupled glucose transport by glucose in a cultured epithelium.
    Moran A; Turner RJ; Handler JS
    J Biol Chem; 1983 Dec; 258(24):15087-90. PubMed ID: 6654906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneity in the effects of membrane potentials on pantothenate and glucose uptakes by rabbit renal apical membranes.
    Barbarat B; Chambrey R; Podevin RA
    J Physiol; 1991 Nov; 443():79-90. PubMed ID: 1822544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.