These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 7187212)

  • 1. Cardiorespiratory assessment of 24-hour crash-diet effects on altitude, +Gz, and fatigue tolerances.
    Lategola MT; Lyne PJ; Burr MJ
    Aviat Space Environ Med; 1982 Mar; 53(3):201-9. PubMed ID: 7187212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiorespiratory assessment of decongestant-antihistamine effects on altitude, +Gz, and fatigue tolerances.
    Lategola MT; Davis AW; Lyne PJ; Burr MJ
    Aviat Space Environ Med; 1979 Feb; 50(2):101-9. PubMed ID: 36065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mediating effect of onset rate on the relationship between +Gz and LBNP tolerance and cardiovascular reflexes.
    Ludwig DA; Krock LP; Doerr DA; Convertino VA
    Aviat Space Environ Med; 1998 Jul; 69(7):630-8. PubMed ID: 9681368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lower body negative pressure box for +Gz simulation in the upright seated position.
    Lategola MT; Trent CC
    Aviat Space Environ Med; 1979 Nov; 50(11):1182-4. PubMed ID: 526224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of repeated altitude exposures on the incidence of decompression sickness.
    Pilmanis AA; Webb JT; Kannan N; Balldin U
    Aviat Space Environ Med; 2002 Jun; 73(6):525-31. PubMed ID: 12056666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gastric emptying effects of dietary fiber during 8 hours at two simulated cabin altitudes.
    Hinninghofen H; Musial F; Kowalski A; Enck P
    Aviat Space Environ Med; 2006 Feb; 77(2):121-3. PubMed ID: 16491579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological biochemical, and performance responses to a 24-hour crash diet.
    Higgins EA; Mertens HW; McKenzie JM; Funkhouser GE
    Aviat Space Environ Med; 1982 Mar; 53(3):210-7. PubMed ID: 7187213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vasodepressor syncope induced by lower body negative pressure: possible relevance to +Gz-stress training--a case report.
    Hilton F; Giordano J; Fortney S
    Aviat Space Environ Med; 1989 Jan; 60(1):61-3. PubMed ID: 2923598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of multivariate statistical analysis to estimate +Gz tolerance based on the changes of hemodynamic parameters during lower body negative pressure (LBNP).
    Turski BK; Kuzak W; Debinski WB; Gembicka-Kuzak DM; Dabrowski OB
    J Gravit Physiol; 1995; 2(1):P35-6. PubMed ID: 11538924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lower body negative pressure system for simulation of +Gz-induced physiological strain.
    Verghese CA; Prasad AS
    Aviat Space Environ Med; 1993 Feb; 64(2):165-9. PubMed ID: 8431192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of a reduced G-suit pressure schedule on G-duration tolerance using enhanced G-protection ensembles.
    Krock LP; Balldin UI; Harms-Ringdahl K; Singstad CP; Linder J; Siegborn J
    Aviat Space Environ Med; 1997 May; 68(5):403-9. PubMed ID: 9143750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testing method of plus and minus Gz tolerance at Czech Air Force pilots.
    Dosel P; Hanousek J; Petricek J; Cmiral J; Cettl L
    J Gravit Physiol; 2004 Jul; 11(2):P239-40. PubMed ID: 16240528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of ozone on symptoms and cardiopulmonary function in a flight attendant surrogate population.
    Lategola MT; Melton CE; Higgins EA
    Aviat Space Environ Med; 1980 Mar; 51(3):237-46. PubMed ID: 7362571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spirometric assessment of potential respiratory impairment in general aviation airmen.
    Lategola MT; Flux M; Lyne PJ
    Aviat Space Environ Med; 1977 Jun; 48(6):508-11. PubMed ID: 869836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intermittent altitude exposures reduce acute mountain sickness at 4300 m.
    Beidleman BA; Muza SR; Fulco CS; Cymerman A; Ditzler D; Stulz D; Staab JE; Skrinar GS; Lewis SF; Sawka MN
    Clin Sci (Lond); 2004 Mar; 106(3):321-8. PubMed ID: 14561214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exercise-induced altitude decompression sickness.
    Pilmanis AA; Olson RM; Fischer MD; Wiegman JF; Webb JT
    Aviat Space Environ Med; 1999 Jan; 70(1):22-9. PubMed ID: 9895017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The sleep, subjective fatigue, and sustained attention of commercial airline pilots during an international pattern.
    Petrilli RM; Roach GD; Dawson D; Lamond N
    Chronobiol Int; 2006; 23(6):1357-62. PubMed ID: 17190718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulmonary decompression sickness at altitude: early symptoms and circulating gas emboli.
    Balldin UI; Pilmanis AA; Webb JT
    Aviat Space Environ Med; 2002 Oct; 73(10):996-9. PubMed ID: 12398262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acceleration in other axes affects +Gz tolerance: dynamic centrifuge simulation of agile flight.
    Albery WB
    Aviat Space Environ Med; 2004 Jan; 75(1):1-6. PubMed ID: 14736126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasma volume by Evans blue: effects of eating and comparison with other methods at altitude.
    Loeppky JA; Luther DK; Maes D; Riboni K; Hinghofer-Szalkay H; Charlton GA; Icenogle MV
    Aviat Space Environ Med; 2002 Sep; 73(9):902-6. PubMed ID: 12234042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.