These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
78 related articles for article (PubMed ID: 7188324)
21. [Differential voltametry: a new method for studying the cerebral metabolism of monoamines]. Pujol JF J Pharmacol; 1985; 16 Suppl 1():33-50. PubMed ID: 4033135 [TBL] [Abstract][Full Text] [Related]
22. Electrochemical oxidation of catecholamines and catechols at carbon nanotube electrodes. Maldonado S; Morin S; Stevenson KJ Analyst; 2006 Feb; 131(2):262-7. PubMed ID: 16440092 [TBL] [Abstract][Full Text] [Related]
23. Improved detection limit for catecholamines using liquid chromatography-electrochemistry with a carbon interdigitated array microelectrode. Niwa O; Tabei H; Solomon BP; Xie F; Kissinger PT J Chromatogr B Biomed Appl; 1995 Aug; 670(1):21-8. PubMed ID: 7493080 [TBL] [Abstract][Full Text] [Related]
24. Selective determination of 3,4-dihydroxyphenylacetic acid in the presence of ascorbic acid using 4-(dimethylamino)pyridine capped gold nanoparticles immobilized on gold electrode. Raj MA; Revin SB; John SA Colloids Surf B Biointerfaces; 2011 Oct; 87(2):353-60. PubMed ID: 21683558 [TBL] [Abstract][Full Text] [Related]
25. A double-cycle high-speed voltammetric technique allowing direct measurement of irreversibly oxidised species: characterisation and application to the temporal measurement of ascorbate in the rat central nervous system. Stamford JA; Kruk ZL; Millar J J Neurosci Methods; 1984 Feb; 10(2):107-18. PubMed ID: 6748733 [TBL] [Abstract][Full Text] [Related]
26. Amperometric biosensor based on tyrosinase-conjugated polysaccharide hybrid film: selective determination of nanomolar neurotransmitters metabolite of 3,4-dihydroxyphenylacetic acid (DOPAC) in biological fluid. Liu A; Honma I; Zhou H Biosens Bioelectron; 2005 Nov; 21(5):809-16. PubMed ID: 15886002 [TBL] [Abstract][Full Text] [Related]
27. Simultaneous voltammetric determination of norepinephrine, ascorbic acid and uric acid on polycalconcarboxylic acid modified glassy carbon electrode. Liu AL; Zhang SB; Chen W; Lin XH; Xia XH Biosens Bioelectron; 2008 May; 23(10):1488-95. PubMed ID: 18289842 [TBL] [Abstract][Full Text] [Related]
28. Microelectrodes for the measurement of catecholamines in biological systems. Cahill PS; Walker QD; Finnegan JM; Mickelson GE; Travis ER; Wightman RM Anal Chem; 1996 Sep; 68(18):3180-6. PubMed ID: 8797378 [TBL] [Abstract][Full Text] [Related]
29. Ion-exchange voltammetry of dopamine at Nafion-coated glassy carbon electrodes: quantitative features of ion-exchange partition and reassessment on the oxidation mechanism of dopamine in the presence of excess ascorbic acid. Rocha LS; Carapuça HM Bioelectrochemistry; 2006 Oct; 69(2):258-66. PubMed ID: 16713377 [TBL] [Abstract][Full Text] [Related]
30. Voltammetry in the striatum of chronic freely moving rats: detection of catechols and ascorbic acid. Gonon F; Buda M; Cespuglio R; Jouvet M; Pujol JF Brain Res; 1981 Oct; 223(1):69-80. PubMed ID: 7284811 [TBL] [Abstract][Full Text] [Related]
31. Electrochemical behavior of a covalently modified glassy carbon electrode with aspartic acid and its use for voltammetric differentiation of dopamine and ascorbic acid. Zhang L; Lin X Anal Bioanal Chem; 2005 Aug; 382(7):1669-77. PubMed ID: 15997381 [TBL] [Abstract][Full Text] [Related]
32. Sex-related olfactory stimuli induce a selective increase in dopamine release in the nucleus accumbens of male rats. A voltammetric study. Louilot A; Gonzalez-Mora JL; Guadalupe T; Mas M Brain Res; 1991 Jul; 553(2):313-7. PubMed ID: 1933289 [TBL] [Abstract][Full Text] [Related]
33. Development of a voltammetric technique for monitoring brain dopamine metabolism: compensation for interference caused by DOPAC electrogenerated during homovanillic acid detection. Mulla IA; Lowry JP; Serra PA; O'Neill RD Analyst; 2009 May; 134(5):893-8. PubMed ID: 19381381 [TBL] [Abstract][Full Text] [Related]
34. Changes relevant to catecholamine metabolism in liver and brain of ascorbic acid deficient guinea-pigs. Deana R; Bharaj BS; Verjee ZH; Galzigna L Int J Vitam Nutr Res; 1975; 45(2):175-82. PubMed ID: 809379 [TBL] [Abstract][Full Text] [Related]
35. Sensor-tissue interactions in neurochemical analysis with carbon paste electrodes in vivo. O'Neill RD Analyst; 1993 Apr; 118(4):433-8. PubMed ID: 7684207 [TBL] [Abstract][Full Text] [Related]
36. Locus coeruleus monoaminergic activity and plasma corticotropin after hemorrhage in cats. Thrivikraman KV; Carlson DE; Gann DS Am J Physiol; 1988 Feb; 254(2 Pt 2):R289-95. PubMed ID: 2830796 [TBL] [Abstract][Full Text] [Related]
37. Intracerebral injection of ascorbate oxidase - effect on in vivo electrochemical recordings. Brazell MP; Marsden CA Brain Res; 1982 Oct; 249(1):167-72. PubMed ID: 7139292 [No Abstract] [Full Text] [Related]
38. Increased catecholamine metabolism in the locus coeruleus of young spontaneously hypertensive rats. Koulu M; Saavedra JM; Niwa M; Linnoila M Brain Res; 1986 Mar; 369(1-2):361-4. PubMed ID: 3084039 [TBL] [Abstract][Full Text] [Related]
39. Effect of pH and surface functionalities on the cyclic voltammetric responses of carbon-fiber microelectrodes. Runnels PL; Joseph JD; Logman MJ; Wightman RM Anal Chem; 1999 Jul; 71(14):2782-9. PubMed ID: 10424168 [TBL] [Abstract][Full Text] [Related]
40. Simultaneous voltammetric measurement of ascorbic acid, epinephrine and uric acid at a glassy carbon electrode modified with caffeic acid. Ren W; Luo HQ; Li NB Biosens Bioelectron; 2006 Jan; 21(7):1086-92. PubMed ID: 15871920 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]