BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 718850)

  • 1. Proximity Relationships of tryptophanyl residues and oxygen binding site in Levantina hierosolima hemocyanin. A fluorimetric study.
    Shaklai N; Gafni A; Daniel E
    Biochemistry; 1978 Oct; 17(21):4438-42. PubMed ID: 718850
    [No Abstract]   [Full Text] [Related]  

  • 2. Phosphorescence properties of hemocyanin from Levantina hierosolima.
    Shaklai N; Daniel E
    Biochemistry; 1972 May; 11(11):2199-203. PubMed ID: 5027622
    [No Abstract]   [Full Text] [Related]  

  • 3. Oxygen binding by hemocyanin from Levantina hierosolima. II. Interpretation of cooperativity in terms of ligand-ligand linkage.
    Shaklai N; Klarman A; Daniel E
    Biochemistry; 1975 Jan; 14(1):105-8. PubMed ID: 234016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen binding by hemocyanin from Levantina hierosolima. I. Exclusion of subunit interactions as a basis for cooperativity.
    Klarman A; Shaklai N; Daniel E
    Biochemistry; 1975 Jan; 14(1):102-4. PubMed ID: 234015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen binding properties of haemocyanin from Levantina hierosolima.
    Er-El Z; Shaklai N; Daniel E
    J Mol Biol; 1972 Mar; 64(2):341-52. PubMed ID: 5023180
    [No Abstract]   [Full Text] [Related]  

  • 6. Fluorescence properties of hemocyanin from Levantina hierosolima.
    Shaklai N; Daniel E
    Biochemistry; 1970 Feb; 9(3):564-8. PubMed ID: 5415961
    [No Abstract]   [Full Text] [Related]  

  • 7. The binding of calcium ions to hemocyanin from Levantina hierosolima at physiological pH.
    Klarman A; Shaklai N; Daniel E
    Biochim Biophys Acta; 1972 Jan; 257(1):150-7. PubMed ID: 5009825
    [No Abstract]   [Full Text] [Related]  

  • 8. Tryptophan quenching as linear sensor for oxygen binding of arthropod hemocyanins.
    Erker W; Hübler R; Decker H
    Biochim Biophys Acta; 2008 Oct; 1780(10):1143-7. PubMed ID: 18656525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooperative transition in the conformation of 24-mer tarantula hemocyanin upon oxygen binding.
    Erker W; Beister U; Decker H
    J Biol Chem; 2005 Apr; 280(13):12391-6. PubMed ID: 15695808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and properties of hemocyanins. XIII. Dissociation of Helix pomatia alpha-hemocyanin at alkaline pH.
    Siezen RJ; van Driel R
    J Mol Biol; 1974 Nov; 90(1):91-102. PubMed ID: 4453015
    [No Abstract]   [Full Text] [Related]  

  • 11. Oxygen-linked association-dissociation of Helix pomatia hemocyanin.
    van Driel R; van Bruggen EF
    Biochemistry; 1974 Sep; 13(20):4079-83. PubMed ID: 4414971
    [No Abstract]   [Full Text] [Related]  

  • 12. Heavy metal ion interactions with Callinectes sapidus hemocyanin: structural and functional changes induced by a variety of heavy metal ions.
    Brouwer M; Bonaventura C; Bonaventura J
    Biochemistry; 1982 May; 21(10):2529-38. PubMed ID: 7093201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrite and nitric oxide treatment of Helix pomatia hemocyanin: single and double oxidation of the active site.
    van der Deen H; Hoving H
    Biochemistry; 1977 Aug; 16(16):3519-25. PubMed ID: 196636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence spectroscopy of the tryptophan microenvironment in Carcinus aestuarii hemocyanin.
    Di Muro P; Beltramini M; Nikolov P; Petkova I; Salvato B; Ricchelli F
    Z Naturforsch C J Biosci; 2002; 57(11-12):1084-91. PubMed ID: 12562099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active-site disruption in native Limulus hemocyanin and its subunits by disulfide-bond reductants: a chemical probe for the study of structure-function relationships in the hemocyanins.
    Topham R; Tesh S; Cole G; Mercatante D; Westcott A; Bonaventura C
    Arch Biochem Biophys; 1998 Apr; 352(1):103-13. PubMed ID: 9521822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen binding and subunit interactions in Helix pomatia hemocyanin.
    van Driel R
    Biochemistry; 1973 Jul; 12(14):2696-8. PubMed ID: 4711472
    [No Abstract]   [Full Text] [Related]  

  • 17. Structure and stability of arthropodan hemocyanin Limulus polyphemus.
    Dolashka-Angelova P; Dolashki A; Stevanovic S; Hristova R; Atanasov B; Nikolov P; Voelter W
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Apr; 61(6):1207-17. PubMed ID: 15741123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence properties and conformational stability of the beta-hemocyanin of Helix pomatia.
    Idakieva K; Siddiqui NI; Parvanova K; Nikolov P; Gielens C
    Biochim Biophys Acta; 2006 Apr; 1764(4):807-14. PubMed ID: 16426906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen binding to hemocyanin: a resonance Raman spectroscopic study.
    Loehr JS; Freedman TB; Loehr TM
    Biochem Biophys Res Commun; 1974 Jan; 56(2):510-5. PubMed ID: 4823878
    [No Abstract]   [Full Text] [Related]  

  • 20. The aromatic circular dichroism spectrum as a probe for conformational changes in the active site environment of hemocyanins.
    Beltramini M; Bubacco L; Salvato B; Casella L; Gullotti M; Garofani S
    Biochim Biophys Acta; 1992 Mar; 1120(1):24-32. PubMed ID: 1554739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.