BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 718889)

  • 21. A deuterium nuclear magnetic resonance study of the condensing effect of cholesterol on egg phosphatidylcholine bilayer membranes. I. Perdeuterated fatty acid probes.
    Stockton GW; Smith IC
    Chem Phys Lipids; 1976 Oct; 17(2-3 SPEC NO):251-63. PubMed ID: 1033045
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural and dynamical studies of mixed chlorophyll/phosphatidylcholine bilayers via x-ray diffraction, absorption polarization spectroscopy and nuclear magnetic resonance.
    Podo F; Cain JE; Blasie JK
    Biochim Biophys Acta; 1976 Jan; 419(1):19-41. PubMed ID: 1244858
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calorimetric and spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylglycerol bilayer membranes.
    McMullen TP; Lewis RN; McElhaney RN
    Biochim Biophys Acta; 2009 Feb; 1788(2):345-57. PubMed ID: 19083990
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphatidylcholine-cholesterol interactions: bilayers of heteroacid lipids containing linoleate lose calorimetric transitions at low cholesterol concentration.
    Keough KM; Giffin B; Matthews PL
    Biochim Biophys Acta; 1989 Jul; 983(1):51-5. PubMed ID: 2758050
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the localization of ubiquinone in phosphatidylcholine bilayers.
    Stidham MA; McIntosh TJ; Siedow JN
    Biochim Biophys Acta; 1984 Dec; 767(3):423-31. PubMed ID: 6509042
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction of cholesterol with galactocerebroside and galactocerebroside-phosphatidylcholine bilayer membranes.
    Ruocco MJ; Shipley GG
    Biophys J; 1984 Dec; 46(6):695-707. PubMed ID: 6518252
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The partition of cholesterol between ordered and fluid bilayers of phosphatidylcholine: a synchrotron X-ray diffraction study.
    Chen L; Yu Z; Quinn PJ
    Biochim Biophys Acta; 2007 Nov; 1768(11):2873-81. PubMed ID: 17900525
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formation of intermediate gel-liquid crystalline phase on medium-chain phosphatidylcholine bilayers: Phase transitions depending on the bilayer packing.
    Matsuki H; Goto M; Motohashi M; Kiguchi A; Nakao T; Tamai N
    Biochim Biophys Acta Biomembr; 2020 May; 1862(5):183197. PubMed ID: 31958435
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure and interactive properties of highly fluorinated phospholipid bilayers.
    McIntosh TJ; Simon SA; Vierling P; Santaella C; Ravily V
    Biophys J; 1996 Oct; 71(4):1853-68. PubMed ID: 8889161
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular motion and order in oriented lipid multibilayer membranes evaluated by simulations of spin label ESR spectra. Effects of temperature, cholesterol and magnetic field.
    Shimoyama Y; Eriksson LE; Ehrenberg A
    Biochim Biophys Acta; 1978 Apr; 508(2):213-35. PubMed ID: 205243
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential scanning calorimetry and 31P NMR studies on sonicated and unsonicated phosphatidylcholine liposomes.
    de Kruijff B; Cullis PR; Radda GK
    Biochim Biophys Acta; 1975 Sep; 406(1):6-20. PubMed ID: 1242108
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of a single cis double bond on the structures of a phospholipid bilayer.
    Seelig A; Seelig J
    Biochemistry; 1977 Jan; 16(1):45-50. PubMed ID: 831777
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Range of the solvation pressure between lipid membranes: dependence on the packing density of solvent molecules.
    McIntosh TJ; Magid AD; Simon SA
    Biochemistry; 1989 Sep; 28(19):7904-12. PubMed ID: 2611220
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles.
    Lewis BA; Engelman DM
    J Mol Biol; 1983 May; 166(2):211-7. PubMed ID: 6854644
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure and cohesive properties of sphingomyelin/cholesterol bilayers.
    McIntosh TJ; Simon SA; Needham D; Huang CH
    Biochemistry; 1992 Feb; 31(7):2012-20. PubMed ID: 1536844
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure and thermotropic properties of 1-stearoyl-2-acetyl-phosphatidylcholine bilayer membranes.
    Shah J; Duclos RI; Shipley GG
    Biophys J; 1994 May; 66(5):1469-78. PubMed ID: 8061196
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of platelet-activating factor (PAF), lyso-PAF and lysophosphatidylcholine on phosphatidylcholine bilayers, an ESR, 31P-NMR and X-ray diffraction study.
    Olivier JL; Chachaty C; Quinn PJ; Wolf C
    J Lipid Mediat; 1991; 3(3):311-32. PubMed ID: 1663404
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cholesterol effects on the phosphatidylcholine bilayer nonpolar region: a molecular simulation study.
    Róg T; Pasenkiewicz-Gierula M
    Biophys J; 2001 Oct; 81(4):2190-202. PubMed ID: 11566790
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study of the interaction of an alpha-helical transmembrane peptide with phosphatidylcholine bilayer membranes by means of densimetry and ultrasound velocimetry.
    Rybar P; Krivanek R; Samuely T; Lewis RN; McElhaney RN; Hianik T
    Biochim Biophys Acta; 2007 Jun; 1768(6):1466-78. PubMed ID: 17462583
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination of the depth of bromine atoms in bilayers formed from bromolipid probes.
    McIntosh TJ; Holloway PW
    Biochemistry; 1987 Mar; 26(6):1783-8. PubMed ID: 3593689
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.