These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
425 related articles for article (PubMed ID: 7189536)
1. Complement lysis of human erythrocytes. II. A unique interaction of human C8 and C9 with paroxysmal nocturnal hemoglobinuria erythrocytes. Packman CH; Rosenfeld SI; Jenkins DE; Leddy JP J Immunol; 1980 Jun; 124(6):2818-23. PubMed ID: 7189536 [No Abstract] [Full Text] [Related]
2. Complement lysis of human erythrocytes. Differeing susceptibility of two types of paroxysmal nocturnal hemoglobinuria cells to C5b-9. Packman CH; Rosenfeld SI; Jenkins DE; Thiem PA; Leddy JP J Clin Invest; 1979 Aug; 64(2):428-33. PubMed ID: 457861 [TBL] [Abstract][Full Text] [Related]
3. Complement lysis of human erythrocytes. III. Differing effectiveness of human and guinea pig C9 on normal and paroxysmal nocturnal hemoglobinuria cells. Rosenfeld SI; Packman CH; Jenkins DE; Countryman JK; Leddy JP J Immunol; 1980 Nov; 125(5):2063-8. PubMed ID: 6776186 [No Abstract] [Full Text] [Related]
4. Enhanced reactive lysis of paroxysmal nocturnal hemoglobinuria erythrocytes by C5b-9 does not involve increased C7 binding or cell-bound C3b. Rosenfeld SI; Jenkins DE; Leddy JP J Immunol; 1985 Jan; 134(1):506-11. PubMed ID: 3964820 [TBL] [Abstract][Full Text] [Related]
5. Determination of the number of lytic sites in biconcave and spheroid erythrocyte ghosts after complement lysis. Bauer J; Podack ER; Valet G J Immunol; 1979 May; 122(5):2032-6. PubMed ID: 448115 [No Abstract] [Full Text] [Related]
6. Activation of the fifth and sixth component of the complement system: similarities between C5b6 and C(56)a with respect to lytic enhancement by cell-bound C3b or A2C, and species preferences of target cell. Hänsch GM; Hammer CH; Mayer MM; Shin ML J Immunol; 1981 Sep; 127(3):999-1002. PubMed ID: 6911149 [TBL] [Abstract][Full Text] [Related]
7. Deviated lysis: transfer of complement lytic activity to unsensitized cells. IV. Parital isolation of the activity. Hänsch G; Rother U; Rother K Z Immunitatsforsch Immunobiol; 1977 Apr; 153(1):48-59. PubMed ID: 868206 [TBL] [Abstract][Full Text] [Related]
8. Lytic activity of C5-9 complexes for erythrocytes from the species other than sheep: C9 rather than C8-dependent variation in lytic activity. Yamamoto KI J Immunol; 1977 Oct; 119(4):1482-5. PubMed ID: 894048 [TBL] [Abstract][Full Text] [Related]
9. Enhanced reactive lysis of paroxysmal nocturnal hemoglobinuria erythrocytes. Studies on C9 binding and incorporation into high molecular weight complexes. Rosenfeld SI; Jenkins DE; Leddy JP J Exp Med; 1986 Oct; 164(4):981-97. PubMed ID: 3760783 [TBL] [Abstract][Full Text] [Related]
10. Paroxysmal nocturnal hemoglobinuria type III. Lack of an erythrocyte membrane protein restricting the lysis by C5b-9. Hänsch GM; Schönermark S; Roelcke D J Clin Invest; 1987 Jul; 80(1):7-12. PubMed ID: 3597779 [TBL] [Abstract][Full Text] [Related]
11. Deviated lysis: transfer of complement lytic activity to unsensitized cells. I. Generation of the transferable activity on the surface of complement resistant bacteria. Rother U; Hänsch G; Menzel J; Rother K Z Immunitatsforsch Exp Klin Immunol; 1974 Nov; 148(2):172-86. PubMed ID: 4283273 [No Abstract] [Full Text] [Related]
12. Deviated lysis: Transfer of complement lytic activity to unsensitized cells II. Generation of the activity by inulin and by antigen antibody complexes. Rother U; Hänsch G; Rother K Z Immunitatsforsch Immunobiol; 1976 Aug; 151(1):442-54. PubMed ID: 785847 [TBL] [Abstract][Full Text] [Related]
13. Human platelet-initiated formation and uptake of the C5-9 complex of human complement. Zimmerman TS; Kolb WP J Clin Invest; 1976 Jan; 57(1):203-11. PubMed ID: 812888 [TBL] [Abstract][Full Text] [Related]
14. Enhanced complement-mediated lysis of type III paroxysmal nocturnal hemoglobinuria erythrocytes involves increased C9 binding and polymerization. Hu VW; Nicholson-Weller A Proc Natl Acad Sci U S A; 1985 Aug; 82(16):5520-4. PubMed ID: 3860874 [TBL] [Abstract][Full Text] [Related]
15. Restriction of complement-mediated membrane damage by the eighth component of complement: a dual role for C8 in the complement attack sequence. Nemerow GR; Yamamoto KI; Lint TF J Immunol; 1979 Sep; 123(3):1245-52. PubMed ID: 469249 [No Abstract] [Full Text] [Related]
18. Trypsin-activated complex of human factor B with cobra venom factor (CVF), cleaving C3 and C5 and generating a lytic factor for unsensitized guinea pig erythrocytes. I. Generation of the activated complex. Miyama A; Kato T; Horai S; Yokoo J; Kashiba S Biken J; 1975 Dec; 18(4):193-204. PubMed ID: 1218074 [TBL] [Abstract][Full Text] [Related]
19. The structural events associated with the attachment of complement components to cell membranes in reactive lysis. Dourmashkin RR Immunology; 1978 Aug; 35(2):205-12. PubMed ID: 750370 [TBL] [Abstract][Full Text] [Related]
20. C3-independent immune haemolysis: mechanism of membrane attack complex formation. Kitamura H; Tsuboi M; Nagaki K Immunology; 1986 Sep; 59(1):147-51. PubMed ID: 3759127 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]