These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 7189996)

  • 1. Gas-liquid chromatography for evaluating polysaccharide degradation by Ruminococcus flavefaciens C94 and Bacteroides succinogenes S85.
    Collings GF; Yokoyama MT
    Appl Environ Microbiol; 1980 Mar; 39(3):566-71. PubMed ID: 7189996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competition for cellulose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions.
    Shi Y; Odt CL; Weimer PJ
    Appl Environ Microbiol; 1997 Feb; 63(2):734-42. PubMed ID: 9023950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnesium requirement of some of the principal rumen cellulolytic bacteria.
    Morales MS; Dehority BA
    Animal; 2014 Sep; 8(9):1427-32. PubMed ID: 24846132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: pure-culture studies with cellulose and alkaline peroxide-treated wheat straw.
    Odenyo AA; Mackie RI; Stahl DA; White BA
    Appl Environ Microbiol; 1994 Oct; 60(10):3697-703. PubMed ID: 7527202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competition for cellobiose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions.
    Shi Y; Weimer PJ
    Appl Environ Microbiol; 1997 Feb; 63(2):743-8. PubMed ID: 9023951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adhesion of Bacteroides succinogenes in pure culture and in the presence of Ruminococcus flavefaciens to cell walls in leaves of perennial ryegrass (Lolium perenne).
    Latham MJ; Brooker BE; Pettipher GL; Harris PJ
    Appl Environ Microbiol; 1978 Jun; 35(6):1166-73. PubMed ID: 567035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DEGRADATION AND UTILIZATION OF ISOLATED HEMICELLULOSE BY PURE CULTURES OF CELLULOLYTIC RUMEN BACTERIA.
    DEHORITY BA
    J Bacteriol; 1965 Jun; 89(6):1515-20. PubMed ID: 14291590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of alkaline hydrogen peroxide treatment on in vitro degradation of cellulosic substrates by mixed ruminal microorganisms and Bacteroides succinogenes S85.
    Lewis SM; Montgomery L; Garleb KA; Berger LL; Fahey GC
    Appl Environ Microbiol; 1988 May; 54(5):1163-9. PubMed ID: 3291761
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Yeoman CJ; Fields CJ; Lepercq P; Ruiz P; Forano E; White BA; Mosoni P
    mBio; 2021 Mar; 12(2):. PubMed ID: 33658330
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of soluble carbohydrates on digestion of cellulose by pure cultures of rumen bacteria.
    Hiltner P; Dehority BA
    Appl Environ Microbiol; 1983 Sep; 46(3):642-8. PubMed ID: 6639018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between Treponema bryantii and cellulolytic bacteria in the in vitro degradation of straw cellulose.
    Kudo H; Cheng KJ; Costerton JW
    Can J Microbiol; 1987 Mar; 33(3):244-8. PubMed ID: 3567744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of caproic acid by cocultures of ruminal cellulolytic bacteria and Clostridium kluyveri grown on cellulose and ethanol.
    Kenealy WR; Cao Y; Weimer PJ
    Appl Microbiol Biotechnol; 1995 Dec; 44(3-4):507-13. PubMed ID: 8597554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilization of individual cellodextrins by three predominant ruminal cellulolytic bacteria.
    Shi Y; Weimer PJ
    Appl Environ Microbiol; 1996 Mar; 62(3):1084-8. PubMed ID: 8975600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The hydrolysis of lucerne cell-wall monosaccharide components by monocultures or pair combinations of defined ruminal bacteria.
    Miron J
    J Appl Bacteriol; 1991 Mar; 70(3):245-52. PubMed ID: 2030098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of wheat straw and alkaline hydrogen peroxide-treated wheat straw by Ruminococcus albus 8 and Ruminococcus flavefaciens FD-1.
    Odenyo AA; Mackie RI; Fahey GC; White BA
    J Anim Sci; 1991 Feb; 69(2):819-26. PubMed ID: 2016208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: development of probes for Ruminococcus species and evidence for bacteriocin production.
    Odenyo AA; Mackie RI; Stahl DA; White BA
    Appl Environ Microbiol; 1994 Oct; 60(10):3688-96. PubMed ID: 7527201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionized calcium requirement of rumen cellulolytic bacteria.
    Morales MS; Dehority BA
    J Dairy Sci; 2009 Oct; 92(10):5079-91. PubMed ID: 19762826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between Fibrobacter succinogenes, Prevotella ruminicola, and Ruminococcus flavefaciens in the digestion of cellulose from forages.
    Fondevila M; Dehority BA
    J Anim Sci; 1996 Mar; 74(3):678-84. PubMed ID: 8707727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of dietary fiber on xylanolytic and cellulolytic bacteria of adult pigs.
    Varel VH; Robinson IM; Jung HJ
    Appl Environ Microbiol; 1987 Jan; 53(1):22-6. PubMed ID: 3030194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron microscopic study of the methylcellulose-mediated detachment of cellulolytic rumen bacteria from cellulose fibers.
    Kudo H; Cheng KJ; Costerton JW
    Can J Microbiol; 1987 Mar; 33(3):267-72. PubMed ID: 3567745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.