These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 7190147)

  • 1. Thermodynamic basis for the abnormal solubility of monoclonal cryoimmunoglobulins.
    Middaugh CR; Lawson EQ; Litman GW; Tisel WA; Mood DA; Rosenberg A
    J Biol Chem; 1980 Jul; 255(14):6532-4. PubMed ID: 7190147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrostatic properties of cryoimmunoglobulins.
    Lawson EQ; Brandau DT; Trautman PA; Middaugh CR
    J Immunol; 1988 Feb; 140(4):1218-22. PubMed ID: 3343512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the apparent thermodynamic activities of saturated protein solutions.
    Middaugh CR; Tisel WA; Haire RN; Rosenberg A
    J Biol Chem; 1979 Jan; 254(2):367-70. PubMed ID: 762064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physicochemical characterization of six monoclonal cryoimmunoglobulins: possible basis for cold-dependent insolubility.
    Middaugh CR; Gerber-Jenson B; Hurvitz A; Paluszek A; Scheffel C; Litman GW
    Proc Natl Acad Sci U S A; 1978 Jul; 75(7):3440-4. PubMed ID: 28525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human monoclonal cryoimmunoglobulins. III. Analysis of thermodynamic properties of Jir (IgG3 kappa) protein by fluorescence polarization measurement.
    Akiyoshi J; Nakamura H
    J UOEH; 1988 Dec; 10(4):341-56. PubMed ID: 3145538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigations of the molecular basis for the temperature-dependent insolubility of cryoglobulins. VI. Quenching by acrylamide of the intrinsic tryptophan fluorescence of cryoglobulin and non-cryoglobulin IgM proteins.
    Middaugh CR; Litman GW
    Biochim Biophys Acta; 1978 Jul; 535(1):33-43. PubMed ID: 667117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of solutes on the cold-induced insolubility of monoclonal cryoimmunoglobulins.
    Middaugh CR; Litman GW
    J Biol Chem; 1977 Nov; 252(22):8002-6. PubMed ID: 914859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of the precipitation of cryoimmunoglobulins.
    Lawson EQ; Brandau DT; Trautman PA; Aziz SE; Middaugh CR
    Mol Immunol; 1987 Sep; 24(9):897-905. PubMed ID: 3657810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemoglobin solubility as a function of fractional oxygen saturation for hemoglobins in polyethylene glycol: a sickle hemoglobin model.
    Haire RN; Tisel WA; Niazi G; Rosenberg A; Gill SJ; Richey B
    Biochem Biophys Res Commun; 1981 Jul; 101(1):177-82. PubMed ID: 7284000
    [No Abstract]   [Full Text] [Related]  

  • 10. The interaction of cryoimmunoglobulins with a model surface.
    Brandau DT; Lawson EQ; Schubert CF; Day NK; Matsuno K; Middaugh CR
    Mol Immunol; 1991 Sep; 28(9):1019-26. PubMed ID: 1656245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-ideality and the thermodynamics of sickle-cell hemoglobin gelation.
    Minton AP
    J Mol Biol; 1977 Feb; 110(1):89-103. PubMed ID: 845949
    [No Abstract]   [Full Text] [Related]  

  • 12. On the precipitation of proteins by polymers: the hemoglobin--polyethylene glycol system.
    Haire RN; Tisel WA; White JG; Rosenberg A
    Biopolymers; 1984 Dec; 23(12):2761-79. PubMed ID: 6084525
    [No Abstract]   [Full Text] [Related]  

  • 13. Thermodynamics of monoclonal and mixed cryoimmunoglobin solubilization.
    Brandau DT; Lawson EQ; Trautman PA; Middaugh CR
    Immunol Invest; 1987 Mar; 16(1):21-32. PubMed ID: 3610257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of thermodynamic nonideality on the subcellular distribution of enzymes: adsorption of aldolase to muscle myofibrils.
    Harris SJ; Winzor DJ
    Arch Biochem Biophys; 1985 Dec; 243(2):598-604. PubMed ID: 4083904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryoimmunoglobulins.
    Grey HM; Kohler PF
    Semin Hematol; 1973 Apr; 10(2):87-112. PubMed ID: 4633223
    [No Abstract]   [Full Text] [Related]  

  • 16. Polyphasic linkage between protein solubility and ligand binding in the hemoglobin-polyethylene glycol system.
    Tisel WA; Haire RN; White JG; Rosenberg A; Middaugh CR
    J Biol Chem; 1980 Oct; 255(19):8975-8. PubMed ID: 7410402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryoglobulins and pyroglobulins: an overview.
    Dammacco F; Miglietta A; Lobreglio G; Bonomo L
    Ric Clin Lab; 1986; 16(2):247-67. PubMed ID: 3097789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis for the temperature-dependent insolubility of cryoglobulins--XI. Sequence comparison of the heavy-chain variable regions of the human cryoimmunoglobulins McE and Hil by metric analysis.
    Erickson BW; Gerber-Jenson B; Wang AC; Litman GW
    Mol Immunol; 1982 Mar; 19(3):357-65. PubMed ID: 6808354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Erythema chronicum migrans and Lyme arthritis: cryoimmunoglobulins and clinical activity of skin and joints.
    Steere AC; Hardin JA; Malawista SE
    Science; 1977 Jun; 196(4294):1121-2. PubMed ID: 870973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular basis for the temperature-dependent insolubility of cryoglobulins. XII. Anomalous mobility of monoclonal cryoimmunoglobulin heavy chains accompanying polyacrylamide gel electrophoresis in sodium dodecyl sulfate.
    Litman GW; Scheffel C; Gerber-Jenson B; Litman R; Middaugh CR
    Immunol Commun; 1981; 10(8):707-18. PubMed ID: 6804373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.