These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 719020)

  • 1. [Stability of spatially nonuniform states of diffuse systems].
    Belintsev BN; Livshits MA; Vol'kenshteĭn MV
    Biofizika; 1978; 23(6):1056-62. PubMed ID: 719020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Stability of spatially-nonhomogeneous stationary conditions of a diffuse system. Positional differentiation].
    Belintsev BN; Livshits MA; Vol'kenshteĭn MV
    Biofizika; 1979; 24(1):117-23. PubMed ID: 435523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Formation and stability of dissipative structures].
    Eliukhin VA
    Biofizika; 1979; 24(6):1085-9. PubMed ID: 508824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [A new method of identifying a systems based on the minimal quadratic discrepancy criterion for biophysics problems].
    Karnaukhov AV; Karnaukhova EV
    Biofizika; 2004; 49(1):88-97. PubMed ID: 15029724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of one- and two-dimensional kinks in bistable reaction-diffusion equations with quasidiscrete sources of reaction.
    Rotstein HG; Zhabotinsky AM; Epstein IR
    Chaos; 2001 Dec; 11(4):833-842. PubMed ID: 12779522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collective dynamics of ion channels in biological membranes.
    Babinec P; Babincová M
    Gen Physiol Biophys; 1996 Feb; 15(1):65-9. PubMed ID: 8902558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stationary oscillation for chaotic shunting inhibitory cellular neural networks with impulses.
    Sun J
    Chaos; 2007 Dec; 17(4):043123. PubMed ID: 18163787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pattern formation mechanisms in reaction-diffusion systems.
    Vanag VK; Epstein IR
    Int J Dev Biol; 2009; 53(5-6):673-81. PubMed ID: 19557676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Full analytical description of graviosmotic volume flows.
    Kargol M
    Gen Physiol Biophys; 1994 Apr; 13(2):109-26. PubMed ID: 7806068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-Markovian stochastic processes: colored noise.
    Łuczka J
    Chaos; 2005 Jun; 15(2):26107. PubMed ID: 16035909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Waves on the cell surface].
    Belintsev BN; Baranov MV
    Biofizika; 1990; 35(2):307-11. PubMed ID: 2369604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impulsive synchronization of chaotic systems.
    Li C; Liao X; Zhang X
    Chaos; 2005 Jun; 15(2):23104. PubMed ID: 16035880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific external forcing of spatiotemporal dynamics in reaction-diffusion systems.
    Lebiedz D; Brandt-Pollmann U
    Chaos; 2005 Jun; 15(2):23901. PubMed ID: 16035896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Principal bifurcations and symmetries in the emergence of reaction-diffusion-advection patterns on finite domains.
    Yochelis A; Sheintuch M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056201. PubMed ID: 20365054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronization in networks of spatially extended systems.
    Filatova AE; Hramov AE; Koronovskii AA; Boccaletti S
    Chaos; 2008 Jun; 18(2):023133. PubMed ID: 18601499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards nonlinear selection of reaction-diffusion patterns in presence of advection: a spatial dynamics approach.
    Yochelis A; Sheintuch M
    Phys Chem Chem Phys; 2009 Oct; 11(40):9210-23. PubMed ID: 19812842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Toward the use of an arithmetical language to express the renal in the form of open systems].
    Agressologie; 1972; 13(4):217-32. PubMed ID: 4641612
    [No Abstract]   [Full Text] [Related]  

  • 19. A theoretical description of elastic pillar substrates in biophysical experiments.
    Mohrdieck C; Wanner A; Roos W; Roth A; Sackmann E; Spatz JP; Arzt E
    Chemphyschem; 2005 Aug; 6(8):1492-8. PubMed ID: 16082672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic chaos and stability of a weakly open Bose-Einstein condensate in a double-well trap.
    Luo X; Hai W
    Chaos; 2005 Sep; 15(3):33702. PubMed ID: 16252991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.