These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 7190241)

  • 1. Passive transfer of human myasthenia gravis to rats: 1. Electrophysiology of the developing neuromuscular block.
    Howard JF; Sanders DB
    Neurology; 1980 Jul; 30(7 Pt 1):760-4. PubMed ID: 7190241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Serum factor blocks neuromuscular transmission in myasthenia gravis: electrophysiologic study with intracellular microelectrodes.
    Shibuya N; Mori K; Nakazawa Y
    Neurology; 1978 Aug; 28(8):804-11. PubMed ID: 210423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of miniature end-plate potential amplitude in extraocular and limb muscles in an animal model of myasthenia gravis.
    Zahm DS; Kim YI; Liu HH; Johns TR
    Exp Neurol; 1983 Apr; 80(1):258-62. PubMed ID: 6832272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathological mechanisms in experimental autoimmune myasthenia gravis. II. Passive transfer of experimental autoimmune myasthenia gravis in rats with anti-acetylcholine recepotr antibodies.
    Lindstrom JM; Engel AG; Seybold ME; Lennon VA; Lambert EH
    J Exp Med; 1976 Sep; 144(3):739-53. PubMed ID: 182897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of myasthenic immunoglobulin G on neuromuscular transmission in mouse diaphragm.
    Chiu HC; Chen ML; Tsai MC
    Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi; 1987 Aug; 20(3):217-23. PubMed ID: 2827968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuromuscular transmission in neonatal mice injected with serum globulin of myasthenia gravis patients.
    Pagala MK; Tada S; Namba T; Grob D
    Neurology; 1982 Jan; 32(1):12-7. PubMed ID: 6275304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myasthenia gravis: passive transfer to mice of antibody to human and mouse acetylcholine receptor.
    Oda K; Korenaga S; Ito Y
    Neurology; 1981 Mar; 31(3):282-7. PubMed ID: 6259556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophysiological effects of myasthenic serum factors studied in mouse muscle.
    Lerrick AJ; Wray D; Vincent A; Newsom-Davis J
    Ann Neurol; 1983 Feb; 13(2):186-91. PubMed ID: 6830177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. End-plate potentials in experimental autoimmune myasthenia gravis in rats.
    Lambert EH; Lindstrom JM; Lennon VA
    Ann N Y Acad Sci; 1976; 274():300-18. PubMed ID: 1066990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of acetylcholine receptor antibodies in myasthenia gravis.
    Appel SH; Elias SB; Chauvin P
    Fed Proc; 1979 Sep; 38(10):2381-5. PubMed ID: 478014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myasthenia gravis: passive transfer from man to mouse.
    Toyka KV; Brachman DB; Pestronk A; Kao I
    Science; 1975 Oct; 190(4212):397-9. PubMed ID: 1179220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Passively transferred myasthenia gravis: protection of mouse endplates by Fab fragments from human myasthenic IgG.
    Toyka KV; Löwenadler B; Heininger K; Besinger UA; Birnberger KL; Fateh-Moghadam A; Heilbronn E
    J Neurol Neurosurg Psychiatry; 1980 Sep; 43(9):836-42. PubMed ID: 6252294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of myasthenic immunoglobulin G on motor end-plate morphology.
    Tsujihata M; Satoh A; Yoshimura T; Motomura M; Takeo G; Matsuo H; Nakamura T
    J Neurol; 2003 Jan; 250(1):75-82. PubMed ID: 12527996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myasthenia gravis. Study of humoral immune mechanisms by passive transfer to mice.
    Toyka KV; Drachman DB; Griffin DE; Pestronk A; Winkelstein JA; Fishbeck KH; Kao I
    N Engl J Med; 1977 Jan; 296(3):125-31. PubMed ID: 831074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myasthenia gravis: further electrophysiological and ultrastructural analysis of transmission failure in the mouse passive transfer model.
    Toyka KV; Birnberger KL; Anzil AP; Schlegel C; Besinger U; Struppler A
    J Neurol Neurosurg Psychiatry; 1978 Aug; 41(8):746-53. PubMed ID: 210263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuromuscular blocking properties of suxamethonium and decamethonium in normal and myasthenic rat muscle.
    Johnson BR; Kim YI; Sanders DB
    J Neurol Sci; 1983 Jun; 59(3):431-40. PubMed ID: 6875609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptation of quantal content to decreased postsynaptic sensitivity at single endplates in alpha-bungarotoxin-treated rats.
    Plomp JJ; van Kempen GT; Molenaar PC
    J Physiol; 1992 Dec; 458():487-99. PubMed ID: 1302275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of complement in the pathogenesis of experimental autoimmune myasthenia gravis.
    Lennon VA; Seybold ME; Lindstrom JM; Cochrane C; Ulevitch R
    J Exp Med; 1978 Apr; 147(4):973-83. PubMed ID: 206648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myasthenic serum selectively blocks acetylcholine receptors with long channel open times at developing rat endplates.
    Schuetze SM; Vicini S; Hall ZW
    Proc Natl Acad Sci U S A; 1985 Apr; 82(8):2533-7. PubMed ID: 2581249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myasthenia induced by monoclonal anti-acetylcholine receptor antibodies: clinical and electrophysiological aspects.
    Burres SA; Crayton JW; Gomez CM; Richman DP
    Ann Neurol; 1981 Jun; 9(6):563-8. PubMed ID: 6167199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.