BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 7190437)

  • 21. ADP-activated calcium ion exchange in sarcoplasmic reticulum vesicles.
    Beirăo PS; De Meis L
    Biochim Biophys Acta; 1976 May; 433(3):520-30. PubMed ID: 819033
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The functioning of histidine residues of sarcoplasmic reticulum in Ca2+ transport and related activities.
    Yu BP; Masoro EJ; Bertrand HA
    Biochemistry; 1974 Dec; 13(25):5083-7. PubMed ID: 4279692
    [No Abstract]   [Full Text] [Related]  

  • 23. A new mechanism by which an H+ concentration gradient drives the synthesis of adenosine triphosphate, pH jump, and adenosine triphosphate synthesis by the Ca2+-dependnet adenosine triphosphatase of sarcoplasmic reticulum.
    de Meis L; Tume RK
    Biochemistry; 1977 Oct; 16(20):4455-63. PubMed ID: 20933
    [No Abstract]   [Full Text] [Related]  

  • 24. The effect of halothane on the stability of Ca2+ transport activity of isolated fragmented sarcoplasmic reticulum.
    Diamond EM; Berman MC
    Biochem Pharmacol; 1980 Feb; 29(3):375-81. PubMed ID: 6444817
    [No Abstract]   [Full Text] [Related]  

  • 25. Spectrophotometric studies on the interaction of sarcoplasmic-reticulum fragments with adenosine triphosphate and calcium.
    Nakamaru Y; Schwartz A
    Eur J Biochem; 1973 Apr; 34(1):159-68. PubMed ID: 4701495
    [No Abstract]   [Full Text] [Related]  

  • 26. Role of the Ca2+ concentration gradient in the adenosine 5'-triphosphate-inorganic phosphate exchange catalyzed by sarcoplasmic reticulum.
    de Meis L; Costa Carvalho Mda G
    Biochemistry; 1974 Nov; 13(24):5032-8. PubMed ID: 4433536
    [No Abstract]   [Full Text] [Related]  

  • 27. The effect of ionomycin on calcium fluxes in sarcoplasmic reticulum vesicles and liposomes.
    Beeler TJ; Jona I; Martonosi A
    J Biol Chem; 1979 Jul; 254(14):6229-31. PubMed ID: 156184
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modulation by fatty acids of Ca2+ fluxes in sarcoplasmic-reticulum vesicles.
    Cardoso CM; De Meis L
    Biochem J; 1993 Nov; 296 ( Pt 1)(Pt 1):49-52. PubMed ID: 7504458
    [TBL] [Abstract][Full Text] [Related]  

  • 29. H+ and cation movements associated with ADP, ATP transport in mitochondria.
    Wulf R; Kaltstein A; Klingenberg M
    Eur J Biochem; 1978 Jan; 82(2):585-92. PubMed ID: 23946
    [No Abstract]   [Full Text] [Related]  

  • 30. The initial phase of Ca2+-uptake and ATPase activity of sarcoplasmic reticulum vesicles.
    Kurzmack M; Inesi G
    FEBS Lett; 1977 Feb; 74(1):35-7. PubMed ID: 138599
    [No Abstract]   [Full Text] [Related]  

  • 31. Optical probe responses on sarcoplasmic reticulum: oxacarbocyanines as probes of membrane potential.
    Beeler T; Russell JT; Martonosi A
    Eur J Biochem; 1979 Apr; 95(3):579-91. PubMed ID: 376313
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of acylphosphates on Ca2+ uptake by sarcoplasmic reticulum vesicles.
    Liguri G; Stefani M; Berti A; Nassi P; Ramponi G
    Arch Biochem Biophys; 1980 Apr; 200(2):357-63. PubMed ID: 7436409
    [No Abstract]   [Full Text] [Related]  

  • 33. Phosphorylation of the calcium-transport adenosine triphosphate of cardiac sarcoplasmic reticulum by orthophosphate.
    Winkler F; Suko J
    Eur J Biochem; 1977 Aug; 77(3):611-9. PubMed ID: 19259
    [No Abstract]   [Full Text] [Related]  

  • 34. Activation and inhibition of the calcium gate of sarcoplasmic reticulum by high-affinity ryanodine binding.
    Hasselbach W; Migala A
    FEBS Lett; 1987 Aug; 221(1):119-23. PubMed ID: 3622757
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Trans-magnesium dependency of ATP-dependent calcium uptake into sarcoplasmic reticulum of skeletal muscle.
    Morsy FA; Shamoo AE
    Magnesium; 1985; 4(4):182-7. PubMed ID: 2934589
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ca-2+-dependent inhibitory effects of Na+ and K+ on Ca-2+ transport in sarcoplasmic reticulum vesicles.
    Gattass CR; De Meis L
    Biochim Biophys Acta; 1975 May; 389(3):506-15. PubMed ID: 804935
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluorimetric monitoring of calcium binding to sarcoplasmic reticulum membranes.
    Carvalho CA; Carvalho AP
    Biochim Biophys Acta; 1977 Jul; 468(1):21-30. PubMed ID: 884082
    [No Abstract]   [Full Text] [Related]  

  • 38. PH-induced changes in the reactions controlled by the low- and high-affinity Ca2+-binding sites in sarcoplasmic reticulum.
    Verjovski-Almeida S; de Meis L
    Biochemistry; 1977 Jan; 16(2):329-34. PubMed ID: 13812
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of TRIS and HEPES on function of rabbit muscle light sarcoplasmic reticulum.
    Selinsky BS; Messana AD; Scherer W; Yeagle PL
    Membr Biochem; 1987-1988; 7(2):107-13. PubMed ID: 2970003
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The modification of the unidirectional calcium fluxes of sarcoplasmic reticulum vesicles by monovlent cation ionophroes.
    Louis CF; Nash-Adler PA; Fudyma G; Shigekawa M; Katz AM
    Biochim Biophys Acta; 1980 Jul; 599(2):610-22. PubMed ID: 6157411
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.