These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 7190809)
1. Inhibition of nitrate reduction in some rumen bacteria by tungstate. Prins RA; Cliné-Theil W; Malestein A; Counotte GH Appl Environ Microbiol; 1980 Jul; 40(1):163-5. PubMed ID: 7190809 [TBL] [Abstract][Full Text] [Related]
2. Inhibitory effects of sulphur compounds, copper and tungsten on nitrate reduction by mixed rumen micro-organisms. Takahashi J; Johchi N; Fujita H Br J Nutr; 1989 May; 61(3):741-8. PubMed ID: 2758022 [TBL] [Abstract][Full Text] [Related]
3. Properties of the periplasmic nitrate reductases from Paracoccus pantotrophus and Escherichia coli after growth in tungsten-supplemented media. Gates AJ; Hughes RO; Sharp SR; Millington PD; Nilavongse A; Cole JA; Leach ER; Jepson B; Richardson DJ; Butler CS FEMS Microbiol Lett; 2003 Mar; 220(2):261-9. PubMed ID: 12670690 [TBL] [Abstract][Full Text] [Related]
4. Effect of nitrate on the synthesis and decay of nitrate reductase of Neurospora. Sorger GJ; Debanne MT; Davies J Biochem J; 1974 Jun; 140(3):395-403. PubMed ID: 4155623 [TBL] [Abstract][Full Text] [Related]
5. Activation in vitro of respiratory nitrate reductase of Escherichia coli K12 grown in the presence of tungstate. Involvement of molybdenum cofactor. Saracino L; Violet M; Boxer DH; Giordano G Eur J Biochem; 1986 Aug; 158(3):483-90. PubMed ID: 3525161 [TBL] [Abstract][Full Text] [Related]
6. Nitrate reduction and the growth of Veillonella alcalescens. Inderlied CB; Delwiche EA J Bacteriol; 1973 Jun; 114(3):1206-12. PubMed ID: 4145863 [TBL] [Abstract][Full Text] [Related]
7. Stimulation of nitrate reductase activity of the salt-tolerant yeast Rhodotorula glutinis by tungsten in the presence of molybdenum. Nosikov AN; Chichikalo EV; Golubeva LI; Zvyagilskaya RA; L'vov NP Biochemistry (Mosc); 2000 Feb; 65(2):204-7. PubMed ID: 10713548 [TBL] [Abstract][Full Text] [Related]
8. Formation of the formate-nitrate electron transport pathway from inactive components in Escherichia coli. Scott RH; DeMoss JA J Bacteriol; 1976 Apr; 126(1):478-86. PubMed ID: 770433 [TBL] [Abstract][Full Text] [Related]
9. Influence of tungstate on the formation and activities of four reductases in Proteus mirabilis: identification of two new molybdo-enzymes: chlorate reductase and tetrathionate reductase. Oltmann LF; Claassen VP; Kastelein P; Reijnders WN; Stouthamer AH FEBS Lett; 1979 Oct; 106(1):43-6. PubMed ID: 387443 [No Abstract] [Full Text] [Related]
10. Evaluation of bacterial nitrate reduction in the human oral cavity. Doel JJ; Benjamin N; Hector MP; Rogers M; Allaker RP Eur J Oral Sci; 2005 Feb; 113(1):14-9. PubMed ID: 15693824 [TBL] [Abstract][Full Text] [Related]
11. Studies on nitrate reductase of Clostridium perfringens. Purification, some properties, and effect of tungstate on its formation. Seki-Chiba S; Ishimoto M J Biochem; 1977 Dec; 82(6):1663-71. PubMed ID: 202590 [TBL] [Abstract][Full Text] [Related]
12. Novel growth characteristics and high rates of nitrate reduction of an Escherichia coli strain, LCB2048, that expresses only a periplasmic nitrate reductase. Potter LC; Millington PD; Thomas GH; Rothery RA; Giordano G; Cole JA FEMS Microbiol Lett; 2000 Apr; 185(1):51-7. PubMed ID: 10731606 [TBL] [Abstract][Full Text] [Related]
13. Dissimilatory reduction of nitrate and nitrite in the bovine rumen: nitrous oxide production and effect of acetylene. Kaspar HF; Tiedje JM Appl Environ Microbiol; 1981 Mar; 41(3):705-9. PubMed ID: 7224631 [TBL] [Abstract][Full Text] [Related]
14. [Nitrate reduction in human saliva. (4) Reciprocal action of oral microorganisms on nitrate reduction by Veillonella in vitro (author's transl)]. Atsumi T; Ueha T Josai Shika Daigaku Kiyo; 1978; 7(1):33-8. PubMed ID: 389324 [No Abstract] [Full Text] [Related]
15. Molybdenum and iron as functional consitituents of the enzymes of the nitrate-reducing system of Azotobacter chroococcum. Guerrero MG; Vega JM Arch Microbiol; 1975; 102(2):91-4. PubMed ID: 1115563 [TBL] [Abstract][Full Text] [Related]
16. Degradation of amino acids by pure cultures of rumen bacteria. Scheifinger C; Russell N; Chalupa W J Anim Sci; 1976 Oct; 43(4):821-7. PubMed ID: 977499 [No Abstract] [Full Text] [Related]
17. Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. Moreno-Vivián C; Cabello P; Martínez-Luque M; Blasco R; Castillo F J Bacteriol; 1999 Nov; 181(21):6573-84. PubMed ID: 10542156 [No Abstract] [Full Text] [Related]
18. Effect of tungsten and vanadium on the in vitro assembly of assimilatory nitrate reductase utilizing Neurospora mutant nit-1. Lee KY; Erickson R; Pan SS; Jones G; May F; Nason A J Biol Chem; 1974 Jun; 249(12):3953-9. PubMed ID: 4151950 [No Abstract] [Full Text] [Related]
19. Effect of molybdenum on the growth and metabolism of Veillonella parvula and Streptococcus mutans. Coulter WA; Russell C J Dent Res; 1974; 53(6):1445-9. PubMed ID: 4529936 [No Abstract] [Full Text] [Related]
20. Dissimilatory metabolism of nitrate by the rumen microbiota. Jones GA Can J Microbiol; 1972 Dec; 18(12):1783-7. PubMed ID: 4675328 [No Abstract] [Full Text] [Related] [Next] [New Search]