These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 7190842)

  • 1. A novel method for measurement of intravesicular pH using fluorescent probes.
    Lee HC; Forte JG
    Biochim Biophys Acta; 1980 Sep; 601(1):152-66. PubMed ID: 7190842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study of H+ transport in gastric microsomal vesicles using fluorescent probes.
    Lee HC; Forte JG
    Biochim Biophys Acta; 1978 Apr; 508(2):339-56. PubMed ID: 25082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A quantitative model for using acridine orange as a transmembrane pH gradient probe.
    Clerc S; Barenholz Y
    Anal Biochem; 1998 May; 259(1):104-11. PubMed ID: 9606150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potassium-stimulated ATPase activity and hydrogen transport in gastric microsomal vesicles.
    Lee HC; Breitbart H; Berman M; Forte JG
    Biochim Biophys Acta; 1979 May; 553(1):107-31. PubMed ID: 36910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of fluorescein-dipalmitoylphosphatidylethanolamine for measuring pH-changes in the internal compartment of phospholipid vesicles.
    Thelen M; Petrone G; O'Shea PS; Azzi A
    Biochim Biophys Acta; 1984 Jul; 766(1):161-8. PubMed ID: 6743649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Na+/H+ and Cl-/OH- exchange in rat jejunal brush border membrane vesicles: studies with acridine orange.
    Cassano G; Murer H
    Boll Soc Ital Biol Sper; 1984 May; 60 Suppl 4():143-7. PubMed ID: 6087849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring of the proton electrochemical gradient in reconstituted vesicles: quantitative measurements of both transmembrane potential and intravesicular pH by ratiometric fluorescent probes.
    Holoubek A; Vecer J; Sigler K
    J Fluoresc; 2007 Mar; 17(2):201-13. PubMed ID: 17279336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton transport by gastric membrane vesicles.
    Chang H; Saccomani G; Rabon E; Schackmann R; Sachs G
    Biochim Biophys Acta; 1977 Jan; 464(2):313-27. PubMed ID: 12816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vesicle acidification driven by a millionfold proton gradient: a model for acid influx through gastric cell membranes.
    Barreto J; Lichtenberger LM
    Am J Physiol; 1992 Jan; 262(1 Pt 1):G30-4. PubMed ID: 1310222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The proton pumping activity of H(+)-ATPases: an improved fluorescence assay.
    Rottenberg H; Moreno-Sanchez R
    Biochim Biophys Acta; 1993 Nov; 1183(1):161-70. PubMed ID: 8399374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microsomal protein mediates a pH-dependent fusion of liposomes to rat brain microsomes.
    Pistolesi R; Corazzi L; Arienti G
    Membr Biochem; 1990; 9(4):253-61. PubMed ID: 2152142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trans-potassium effects on the chloride/proton symporter activity of guinea-pig ileal brush-border membrane vesicles.
    Vasseur M; Caüzac M; Frangne R; Alvarado F
    Biochim Biophys Acta; 1992 Jun; 1107(1):150-8. PubMed ID: 1319740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Action of thiocyanate on pH gradient formation by gastric microsomal vesicles.
    Reenstra WW; Forte JG
    Am J Physiol; 1983 Mar; 244(3):G308-13. PubMed ID: 6829771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phospholipid components of the synthetic pulmonary surfactant CHF5633 probed by fluorescence spectroscopy.
    Faggiano S; Ronda L; Raboni S; Sartor F; Cavatorta V; Sgarbi E; Caivano G; Pertile M; Mozzarelli A
    Int J Pharm; 2018 Dec; 553(1-2):290-297. PubMed ID: 30366070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amiloride-inhibited Na+-H+ exchange in human kidney medulla microsomes.
    LaBelle EF
    Am J Physiol; 1986 Aug; 251(2 Pt 2):F232-7. PubMed ID: 3740270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of proton-transporting membranes from resting pig gastric mucosa.
    Ljungström M; Norberg L; Olaisson H; Wernstedt C; Vega FV; Arvidson G; Mårdh S
    Biochim Biophys Acta; 1984 Jan; 769(1):209-19. PubMed ID: 6318822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of pH on the interaction of ligands with the (H+ + K+)-ATPase purified from pig gastric mucosa.
    Ljungström M; Vega FV; Mårdh S
    Biochim Biophys Acta; 1984 Jan; 769(1):220-30. PubMed ID: 6318823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Na+ and H+ transport in human jejunal brush-border membrane vesicles.
    Kleinman JG; Harig JM; Barry JA; Ramaswamy K
    Am J Physiol; 1988 Aug; 255(2 Pt 1):G206-11. PubMed ID: 2841867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na+/H+ antiporter of brush border vesicles: studies with acridine orange uptake.
    Warnock DG; Reenstra WW; Yee VJ
    Am J Physiol; 1982 Jun; 242(6):F733-9. PubMed ID: 6283903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion transport studies with H+-K+-ATPase-rich vesicles: implications for HCl secretion and parietal cell physiology.
    Wolosin JM
    Am J Physiol; 1985 Jun; 248(6 Pt 1):G595-607. PubMed ID: 2408481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.