These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 7191090)

  • 1. Evidence for carrier-mediated uptake of sugars at the serosal side of lamb colon mucosa.
    Scharrer E; Amann B
    Pflugers Arch; 1980 Apr; 384(3):279-82. PubMed ID: 7191090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concentrative amino acid uptake at the serosal side of colon mucosa.
    Scharrer E
    Pflugers Arch; 1978 Sep; 376(3):245-9. PubMed ID: 568252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for carrier-mediated uptake and efflux of sugars at the serosal side of the rat intestinal mucosa in vitro.
    Bronk JR; Ingham PA
    J Physiol; 1976 Feb; 255(2):481-95. PubMed ID: 1255529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of hyperglycaemia on sugar transport in the isolated mucosa of guinea-pig small intestine.
    Fischer E; Lauterbach F
    J Physiol; 1984 Oct; 355():567-86. PubMed ID: 6492003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saturable and nonsaturable process of sugar uptake: effect of oncogenic transformation in transport and uptake of nutrients.
    Hatanaka M
    J Cell Physiol; 1976 Dec; 89(4):745-9. PubMed ID: 188844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of atrial natriuretic peptide on alpha-methyl-D-glucoside intestinal active uptake in rats.
    González Bosc LV; Vidal NA; Prieto R; Tur JA
    Peptides; 1998; 19(7):1249-53. PubMed ID: 9786175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sugar transport in giant axons of Loligo.
    Baker PF; Carruthers A
    J Physiol; 1981 Jul; 316():481-502. PubMed ID: 7320878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Na+-dependent co-transport of alpha-methyl D-glucoside across the mucosal border of rabbit descending colon.
    Ilundain A; Naftalin RJ
    Biochim Biophys Acta; 1981 Jun; 644(2):316-22. PubMed ID: 7260076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the D-glucose/Na+ cotransport system in the intestinal brush-border membrane by using the specific substrate, methyl alpha-D-glucopyranoside.
    Brot-Laroche E; Supplisson S; Delhomme B; Alcalde AI; Alvarado F
    Biochim Biophys Acta; 1987 Nov; 904(1):71-80. PubMed ID: 3663668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sugar transport across the peritubular face of renal cells of the flounder.
    Kleinzeller A; McAvoy EM
    J Gen Physiol; 1973 Aug; 62(2):169-84. PubMed ID: 4722567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Na+-independent D-glucose transport in rabbit renal basolateral membranes.
    Cheung PT; Hammerman MR
    Am J Physiol; 1988 May; 254(5 Pt 2):F711-8. PubMed ID: 3364579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2-Deoxy-D-glucose transport in dog kidney.
    Silverman M; Turner RJ
    Am J Physiol; 1982 Jun; 242(6):F711-20. PubMed ID: 7091323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The validity of assessing changes in intestinal absorption mechanisms for dietary sugars with non-metabolizable analogues (glucalogues).
    Syme G; Levin RJ
    Br J Nutr; 1980 May; 43(3):435-43. PubMed ID: 7417389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apical sodium-glucose co-transport can be regulated by blood-borne glucose in the ruminal epithelium of sheep (Ovis aries, Merino breed).
    Atasoglu C; Gäbel G; Aschenbach JR
    Br J Nutr; 2004 Nov; 92(5):777-83. PubMed ID: 15533266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane-transport of sugars in diabetes mellitus.
    Csaky TZ
    Prog Clin Biol Res; 1988; 258():37-42. PubMed ID: 3380823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Re-examination of hexose exchanges using rat erythrocytes: evidence inconsistent with a one-site sequential exchange model, but consistent with a two-site simultaneous exchange model.
    Naftalin RJ; Rist RJ
    Biochim Biophys Acta; 1994 Apr; 1191(1):65-78. PubMed ID: 8155685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The phlorizin effect on the transport of sugars at the antiluminal face of teased flounder tubules.
    Kleinzeller A; Dubyak G; Mullin JF; McAvoy EM
    J Exp Zool; 1977 Mar; 199(3):391-4. PubMed ID: 850118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of the serosal sugar carrier in isolated intestinal epithelial cells by saccharin.
    Kimmich GA; Randles J; Anderson RL
    Food Chem Toxicol; 1988; 26(11-12):927-34. PubMed ID: 3209132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of mutant renal (LLC-PK1) epithelia defective in basolateral, Na(+)-independent glucose transport.
    Mullin JM; Snock KV; McGinn MT; Kofeldt LM
    Am J Physiol; 1989 Dec; 257(6 Pt 2):F1039-49. PubMed ID: 2603953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.