These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 7191989)

  • 1. Extracellular K+ concentration and K+ balance of the gastrocnemius muscle of the dog during exercise.
    Hirche H; Schumacher E; Hagemann H
    Pflugers Arch; 1980 Sep; 387(3):231-7. PubMed ID: 7191989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interstitial pH of the working gastrocnemius muscle of the dog.
    Steinhagen C; Hirche HJ; Nestle HW; Bovenkamp U; Hosselmann I
    Pflugers Arch; 1976 Dec; 367(2):151-6. PubMed ID: 13344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Work-induced potassium changes in skeletal muscle and effluent venous blood assessed by liquid ion-exchanger microelectrodes.
    Hník P; Holas M; Krekule I; Kŭriz N; Mejsnar J; Smiesko V; Ujec E; Vyskocil F
    Pflugers Arch; 1976 Mar; 362(1):85-94. PubMed ID: 943782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lack of influence of potassium or osmolality on steady-state exercise hyperemia.
    Mohrman DE
    Am J Physiol; 1982 Jun; 242(6):H949-54. PubMed ID: 7091354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood flow elevation increases VO2 maximum during repetitive tetanic contractions of dog muscle in situ.
    Brechue WF; Ameredes BT; Andrew GM; Stainsby WN
    J Appl Physiol (1985); 1993 Apr; 74(4):1499-503. PubMed ID: 8514662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors influencing hydrogen ion concentration in muscle after intense exercise.
    Kowalchuk JM; Heigenhauser GJ; Lindinger MI; Sutton JR; Jones NL
    J Appl Physiol (1985); 1988 Nov; 65(5):2080-9. PubMed ID: 3145275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Net O2, CO2, lactate, and acid exchange by muscle during progressive working contractions.
    Chirtel SJ; Barbee RW; Stainsby WN
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Jan; 56(1):161-5. PubMed ID: 6420379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lactic acid output of cat gastrocnemius-plantaris during repetitive twitch contractions.
    Stainsby WN; Eitzman PD
    Med Sci Sports Exerc; 1986 Dec; 18(6):668-73. PubMed ID: 3097452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of O2 and CO2 in sustained exercise hyperemia of canine skeletal muscle.
    Stowe DF; Owen TL; Anderson DK; Haddy FJ; Scott JB
    Am J Physiol; 1975 Jul; 229(1):28-33. PubMed ID: 238405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences between VO2 maxima of twitch and tetanic contractions are related to blood flow.
    Brechue WF; Barclay JK; O'Drobinak DM; Stainsby WN
    J Appl Physiol (1985); 1991 Jul; 71(1):131-5. PubMed ID: 1917734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beta 2-adrenergic stimulation does not prevent potassium loss from exercising quadriceps muscle.
    Rolett EL; Strange S; Sjøgaard G; Kiens B; Saltin B
    Am J Physiol; 1990 May; 258(5 Pt 2):R1192-200. PubMed ID: 1970926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion fluxes during tetanic stimulation in isolated perfused rat hindlimb.
    Lindinger MI; Heigenhauser GJ
    Am J Physiol; 1988 Jan; 254(1 Pt 2):R117-26. PubMed ID: 3337265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of different cycling frequencies during incremental exercise on the venous plasma potassium concentration in humans.
    Zoladz JA; Duda K; Majerczak J; Thor P
    Physiol Res; 2002; 51(6):581-6. PubMed ID: 12511181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactic acid permeation rate in working gastrocnemii of dogs during metabolic alkalosis and acidosis.
    Hirche HJ; Hombach V; Langohr HD; Wacker U; Busse J
    Pflugers Arch; 1975; 356(3):209-22. PubMed ID: 239385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of adrenergic agonists and antagonists on muscle O2 uptake and lactate metabolism.
    Stainsby WN; Sumners C; Eitzman PD
    J Appl Physiol (1985); 1987 May; 62(5):1845-51. PubMed ID: 2885302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exercise hyperemia in potassium-depleted dogs.
    Hazeyama Y; Sparks HV
    Am J Physiol; 1979 Mar; 236(3):H480-6. PubMed ID: 426084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water and electrolyte fluxes during exercise and their relation to muscle fatigue.
    Sjøgaard G
    Acta Physiol Scand Suppl; 1986; 556():129-36. PubMed ID: 3471050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of exercise intensity on potassium balance in muscle and blood of man.
    Vøllestad NK; Hallén J; Sejersted OM
    J Physiol; 1994 Mar; 475(2):359-68. PubMed ID: 8021842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood ion regulation during repeated maximal exercise and recovery in humans.
    Lindinger MI; Heigenhauser GJ; McKelvie RS; Jones NL
    Am J Physiol; 1992 Jan; 262(1 Pt 2):R126-36. PubMed ID: 1733331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preload release increases blood flow and decreases fatigue during repetitive isotonic muscle contractions.
    Ameredes BT; Brechue WF; Stainsby WN
    J Appl Physiol (1985); 1994 Dec; 77(6):2641-7. PubMed ID: 7896603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.