These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 7192992)
1. Interaction of chlorpromazine with the transport system of glucose in human erythrocytes. Lacko L; Wittke B; Lacko I Arzneimittelforschung; 1980; 30(11):1852-5. PubMed ID: 7192992 [TBL] [Abstract][Full Text] [Related]
2. Interaction of DL-, D- and L-propranolol with the transport system of glucose in human erythrocytes. Lacko L; Wittke B; Lacko I Arzneimittelforschung; 1979; 29(11):1685-7. PubMed ID: 44472 [TBL] [Abstract][Full Text] [Related]
3. [Influence of chlorpromazine and temperature on glucose transport in human erythrocyte ghosts]. Matus VK; Vorobeĭ AV; Chernitskiĭ EA Biofizika; 1977; 22(5):861-5. PubMed ID: 911906 [TBL] [Abstract][Full Text] [Related]
4. Interaction of local anesthetics with the transport system of glucose in human erythrocytes. Lacko L; Wittke B; Lacko I J Cell Physiol; 1977 Aug; 92(2):257-63. PubMed ID: 18483 [TBL] [Abstract][Full Text] [Related]
5. The pH and temperature dependence of the interaction of steroid hormones with the transport system of glucose in human erythrocytes. Lacko L; Wittke B; Lacko I J Cell Physiol; 1977 Feb; 90(2):161-7. PubMed ID: 14166 [TBL] [Abstract][Full Text] [Related]
6. Effect of chlorpromazine on hexose penetration in the human erythrocyte. Baker GF; Rogers HJ Br J Pharmacol; 1973 Mar; 47(3):655P. PubMed ID: 4730865 [No Abstract] [Full Text] [Related]
7. Inhibition of glucose transport in human erythrocytes by benzylalcohol. Lacko L; Wittke B; Lacko I J Cell Physiol; 1978 Aug; 96(2):199-201. PubMed ID: 27526 [TBL] [Abstract][Full Text] [Related]
8. The effect of homologous local anesthetics of the 4-alkoxy- and 4-alkylamino-benzoic acid-diethylamino-esthylester- hydrochloride series on the glucose transport in human erythrocytes. Lacko L; Wittke B; Lacko I J Cell Physiol; 1979 Jul; 100(1):169-74. PubMed ID: 313934 [TBL] [Abstract][Full Text] [Related]
9. The mechanism of chlorpromazine-induced red blood cell swelling. Cornelius AS; Reilly MP; Suzuki M; Asakura T; Horiuchi K Gen Pharmacol; 1994 Jan; 25(1):205-10. PubMed ID: 8026707 [TBL] [Abstract][Full Text] [Related]
10. [Glucose transport inhibition in human erythrocytes by calmodulin antagonists]. Kosovskiĭ MI; Gagel'gans AI Tsitologiia; 1986 Sep; 28(9):1008-12. PubMed ID: 3798559 [TBL] [Abstract][Full Text] [Related]
11. Transport of chlorpromazine in the Caco-2 cell permeability assay: a kinetic study. Broeders JJ; van Eijkeren JC; Blaauboer BJ; Hermens JL Chem Res Toxicol; 2012 Jul; 25(7):1442-51. PubMed ID: 22702643 [TBL] [Abstract][Full Text] [Related]
12. Antisickling agents as inhibitors of glucose transport in human erythrocytes. Lacko L; Wittke B Arzneimittelforschung; 1982; 32(6):684-5. PubMed ID: 7202373 [TBL] [Abstract][Full Text] [Related]
13. The temperature dependence of the exchange transport of glucose in human erythrocytes. Lacko L; Wittke B; Geck P J Cell Physiol; 1973 Oct; 82(2):213-8. PubMed ID: 4753421 [No Abstract] [Full Text] [Related]
14. Interaction of chlorpromazine and imipramine with model membranes. Ahyayauch H; Bennouna M Therapie; 1999; 54(5):585-8. PubMed ID: 10667094 [TBL] [Abstract][Full Text] [Related]
15. Effects of chlorpromazine on the rate of synthesis of various glycerolipids from [3H]glucose in the human primordial placenta. Gimes G; Tóth M Acta Physiol Hung; 1995; 83(2):151-62. PubMed ID: 8588502 [TBL] [Abstract][Full Text] [Related]
16. Blocking of the nicotinic acetylcholine receptor ion channel by chlorpromazine, a noncompetitive inhibitor: A molecular dynamics simulation study. Xu Y; Barrantes FJ; Shen J; Luo X; Zhu W; Chen K; Jiang H J Phys Chem B; 2006 Oct; 110(41):20640-8. PubMed ID: 17034254 [TBL] [Abstract][Full Text] [Related]
17. Improvement of some pharmaceutical properties of drugs by cyclodextrin complexation. 4. Chlorpromazine hydrochloride. Ammar HO; Ghorab M; el-Nahhas SA; Omar SM; Ghorab MM Pharmazie; 1995 Dec; 50(12):805-8. PubMed ID: 8584557 [TBL] [Abstract][Full Text] [Related]
18. [pH-dependence of the transport of D(+) glucose through the human erythrocyte membrane]. Bolis L; Elia M; Luly P; Wilbrandt W Boll Chim Farm; 1969 Apr; 108(4):211-6. PubMed ID: 5806411 [No Abstract] [Full Text] [Related]
19. Effects of cyclodextrins on chlorpromazine-induced haemolysis and central nervous system responses. Uekama K; Irie T; Sunada M; Otagiri M; Iwasaki K; Okano Y; Miyata T; Kasé Y J Pharm Pharmacol; 1981 Nov; 33(11):707-10. PubMed ID: 6118408 [TBL] [Abstract][Full Text] [Related]
20. The pH dependence of exchange transport of glucose in human erythrocytes. Lacko L; Wittke B; Geck P J Cell Physiol; 1972 Aug; 80(1):73-8. PubMed ID: 5071879 [No Abstract] [Full Text] [Related] [Next] [New Search]