These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 7193133)

  • 1. Effect of air resistance on the metabolic cost and performance of cycling.
    Davies CT
    Eur J Appl Physiol Occup Physiol; 1980; 45(2-3):245-54. PubMed ID: 7193133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of wind assistance and resistance on the forward motion of a runner.
    Davies CT
    J Appl Physiol Respir Environ Exerc Physiol; 1980 Apr; 48(4):702-9. PubMed ID: 7380693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relation of oxygen intake and speed in competition cycling and comparative observations on the bicycle ergometer.
    Pugh LG
    J Physiol; 1974 Sep; 241(3):795-808. PubMed ID: 4436817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of endurance training on the ventilatory response to exercise in elite cyclists.
    Hoogeveen AR
    Eur J Appl Physiol; 2000 May; 82(1-2):45-51. PubMed ID: 10879442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of different racing positions on metabolic cost in elite cyclists.
    Gnehm P; Reichenbach S; Altpeter E; Widmer H; Hoppeler H
    Med Sci Sports Exerc; 1997 Jun; 29(6):818-23. PubMed ID: 9219211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency of the VO2max plateau phenomenon in world-class cyclists.
    Lucía A; Rabadán M; Hoyos J; Hernández-Capilla M; Pérez M; San Juan AF; Earnest CP; Chicharro JL
    Int J Sports Med; 2006 Dec; 27(12):984-92. PubMed ID: 16739087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy cost of speec skating and efficiency of work against air resistance.
    Di Prampero PE; Cortili G; Mognoni P; Saibene F
    J Appl Physiol; 1976 Apr; 40(4):584-91. PubMed ID: 931878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic cost of exercise and physical performance in children with some observations on external loading.
    Davies CT
    Eur J Appl Physiol Occup Physiol; 1980; 45(2-3):95-102. PubMed ID: 7193135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of oxygen uptake on a bicycle wind-loaded simulator.
    Dengel DR; Graham RE; Jones MT; Norton KI; Cureton KJ
    Int J Sports Med; 1990 Aug; 11(4):279-83. PubMed ID: 2228356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validity of a velodrome test for competitive road cyclists.
    Padilla S; Mujika I; Cuesta G; Polo JM; Chatard JC
    Eur J Appl Physiol Occup Physiol; 1996; 73(5):446-51. PubMed ID: 8803505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scaling maximal oxygen uptake to predict cycling time-trial performance in the field: a non-linear approach.
    Nevill AM; Jobson SA; Palmer GS; Olds TS
    Eur J Appl Physiol; 2005 Aug; 94(5-6):705-10. PubMed ID: 15906080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of pedal cadence on the accumulated oxygen deficit, maximal aerobic power and blood lactate transition thresholds of high-performance junior endurance cyclists.
    Woolford SM; Withers RT; Craig NP; Bourdon PC; Stanef T; McKenzie I
    Eur J Appl Physiol Occup Physiol; 1999 Sep; 80(4):285-91. PubMed ID: 10483797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen consumption and metabolic strain in rowing ergometer exercise.
    Steinacker JM; Marx TR; Marx U; Lormes W
    Eur J Appl Physiol Occup Physiol; 1986; 55(3):240-7. PubMed ID: 3732251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of body mass in endurance bicycling.
    Swain DP
    Med Sci Sports Exerc; 1994 Jan; 26(1):58-63. PubMed ID: 8133740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Body mass scaling of projected frontal area in competitive cyclists.
    Heil DP
    Eur J Appl Physiol; 2001 Aug; 85(3-4):358-66. PubMed ID: 11560092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling sprint cycling using field-derived parameters and forward integration.
    Martin JC; Gardner AS; Barras M; Martin DT
    Med Sci Sports Exerc; 2006 Mar; 38(3):592-7. PubMed ID: 16540850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological Profile of an Uphill Time Trial in Elite Cyclists.
    Peinado AB; Romero-Parra N; Rojo-Tirado MA; Cupeiro R; Butragueño J; Castro EA; Calderón FJ; Benito PJ
    Int J Sports Physiol Perform; 2018 Mar; 13(3):268-273. PubMed ID: 28657804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of power output during cycling: impact and mechanisms.
    Atkinson G; Peacock O; St Clair Gibson A; Tucker R
    Sports Med; 2007; 37(8):647-67. PubMed ID: 17645369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of the virtual elevation field test method when assessing the aerodynamics of para-cyclists with a uni-lateral trans-tibial amputation.
    Dyer B; Disley BX
    Disabil Rehabil Assist Technol; 2018 Feb; 13(2):107-111. PubMed ID: 28287007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reference values and improvement of aerodynamic drag in professional cyclists.
    García-López J; Rodríguez-Marroyo JA; Juneau CE; Peleteiro J; Martínez AC; Villa JG
    J Sports Sci; 2008 Feb; 26(3):277-86. PubMed ID: 17943597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.