These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 7193294)

  • 1. Calcium-dependent degradation of mammalian neurofilaments by soluble tissue factor(s) from rat spinal cord.
    Schlaepfer WW; Freeman LA
    Neuroscience; 1980; 5(12):2305-14. PubMed ID: 7193294
    [No Abstract]   [Full Text] [Related]  

  • 2. Multiple phosphorylation sites in mammalian neurofilament polypeptides.
    Julien JP; Mushynski WE
    J Biol Chem; 1982 Sep; 257(17):10467-70. PubMed ID: 7202005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A calcium-dependent protease selectively degrading the 160 000 Mr component of neurofilaments is associated with the cytoskeletal preparation of the spinal cord and has an endogenous inhibitory factor.
    Tashiro T; Ishizaki Y
    FEBS Lett; 1982 May; 141(1):41-4. PubMed ID: 7044823
    [No Abstract]   [Full Text] [Related]  

  • 4. Peptide YY (PYY)-immunoreactive neurons in the lower brain stem and spinal cord of rat.
    Broomé M; Hökfelt T; Terenius L
    Acta Physiol Scand; 1985 Oct; 125(2):349-52. PubMed ID: 3907276
    [No Abstract]   [Full Text] [Related]  

  • 5. Regional studies of myelin-associated glycoprotein in the rat central nervous system.
    McIntyre LJ; Quarles RH; Brady RO
    Brain Res; 1978 Jun; 149(1):251-6. PubMed ID: 656959
    [No Abstract]   [Full Text] [Related]  

  • 6. Intermediate filaments from bovine, rat, and human CNS: mapping analysis of the major proteins.
    Chiu FC; Korey B; Norton WT
    J Neurochem; 1980 May; 34(5):1149-59. PubMed ID: 7189549
    [No Abstract]   [Full Text] [Related]  

  • 7. The effects of spinal cord transection and intracisternal 6-hydroxydopamine on phenylethanolamine-N-methyl transferase (PNMT) activity in rat brain stem and spinal cord.
    Reid JL; Zivin JA; Kopin IJ
    J Neurochem; 1976 Mar; 26(3):629-31. PubMed ID: 1063254
    [No Abstract]   [Full Text] [Related]  

  • 8. Studies on the biosynthesis of neurofilament proteins.
    Czosnek H; Soifer D; Wisniewski HM
    J Cell Biol; 1980 Jun; 85(3):726-34. PubMed ID: 7190149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between neurofilaments and microtubule-associated proteins: a possible mechanism for intraorganellar bridging.
    Leterrier JF; Liem RK; Shelanski ML
    J Cell Biol; 1982 Dec; 95(3):982-6. PubMed ID: 6891384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium binding to untreated and dephosphorylated porcine neurofilaments.
    Lefebvre S; Mushynski WE
    Biochem Biophys Res Commun; 1987 Jun; 145(3):1006-11. PubMed ID: 3606591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of neurofilaments from three different sources.
    Plancke Y; Delacourte A; Biserte G
    Biochimie; 1981 Apr; 63(4):365-7. PubMed ID: 7194692
    [No Abstract]   [Full Text] [Related]  

  • 12. The 68,000-dalton neurofilament-associated polypeptide is a component of nonneuronal cells and of skeletal myofibrils.
    Wang C; Asai DJ; Lazarides E
    Proc Natl Acad Sci U S A; 1980 Mar; 77(3):1541-5. PubMed ID: 6990412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrastructural localization of neurofilament proteins in aluminum-induced neurofibrillary tangles and rat cerebellum by immunoperoxidase labeling.
    Dahl D; Nguyen BT; Bignami A
    Dev Neurosci; 1982; 5(1):54-63. PubMed ID: 7049661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of the catabolism of myelin basic proteins of the rat in situ and in vitro.
    Sammeck R; Brady RO
    Brain Res; 1972 Jul; 42(2):441-53. PubMed ID: 5050176
    [No Abstract]   [Full Text] [Related]  

  • 15. Studies of the metabolism of myelin basic proteins in various regions of the central nervous system of immature and adult rats.
    Sammeck R; Martenson RE; Brady RO
    Brain Res; 1971 Nov; 34(2):241-54. PubMed ID: 5172299
    [No Abstract]   [Full Text] [Related]  

  • 16. In vitro assembly and isolation of neurofilaments and microtubules from mammalian CNS.
    Iqbal K; Grundke-Iqbal I; Merz PA; Wisniewski HM; Zaidi T
    Brain Res; 1987 Jul; 388(2):163-72. PubMed ID: 3113660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Giant axonal neuropathy: neurofilaments isolated from diseased dogs have a normal polypeptide composition.
    Julien JP; Mushynski WE; Duncan ID; Griffiths IR
    Exp Neurol; 1981 Jun; 72(3):619-27. PubMed ID: 7195344
    [No Abstract]   [Full Text] [Related]  

  • 18. Association of an axonally transported polypeptide (H) with 100-A filaments. Use of immunoaffinity electron microscope grids.
    Willard M; Simon C; Baitinger C; Levine J; Skene P
    J Cell Biol; 1980 Jun; 85(3):587-96. PubMed ID: 6156174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of calcium channel Ca(V)1.3 immunoreactivity in the rat spinal cord and brain stem.
    Sukiasyan N; Hultborn H; Zhang M
    Neuroscience; 2009 Mar; 159(1):217-35. PubMed ID: 19136044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental studies on the cerebellum from reeler mutant mouse in vivo and in vitro.
    Mikoshiba K; Nagaike K; Kohsaka S; Takamatsu K; Aoki E; Tsukada Y
    Dev Biol; 1980 Sep; 79(1):64-80. PubMed ID: 7409324
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.