These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 7193480)

  • 1. Hypoxanthine in deoxyribonucleic acid: generation by heat-induced hydrolysis of adenine residues and release in free form by a deoxyribonucleic acid glycosylase from calf thymus.
    Karran P; Lindahl T
    Biochemistry; 1980 Dec; 19(26):6005-11. PubMed ID: 7193480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preferential recognition of I.T base-pairs in the initiation of excision-repair by hypoxanthine-DNA glycosylase.
    Dianov G; Lindahl T
    Nucleic Acids Res; 1991 Jul; 19(14):3829-33. PubMed ID: 1861976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excision of hypoxanthine from DNA containing dIMP residues by the Escherichia coli, yeast, rat, and human alkylpurine DNA glycosylases.
    Saparbaev M; Laval J
    Proc Natl Acad Sci U S A; 1994 Jun; 91(13):5873-7. PubMed ID: 8016081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic excision of free hypoxanthine from polydeoxynucleotides and DNA containing deoxyinosine monophosphate residues.
    Karran P; Lindahl T
    J Biol Chem; 1978 Sep; 253(17):5877-9. PubMed ID: 98523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Urea--DNA glycosylase in mammalian cells.
    Breimer LH
    Biochemistry; 1983 Aug; 22(18):4192-7. PubMed ID: 6626501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism of dITP in HeLa cell extracts, incorporation into DNA by isolated nuclei and release of hypoxanthine from DNA by a hypoxanthine-DNA glycosylase activity.
    Myrnes B; Guddal PH; Krokan H
    Nucleic Acids Res; 1982 Jun; 10(12):3693-701. PubMed ID: 7050910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A DNA glycosylase from Escherichia coli that releases free urea from a polydeoxyribonucleotide containing fragments of base residues.
    Breimer L; Lindahl T
    Nucleic Acids Res; 1980 Dec; 8(24):6199-211. PubMed ID: 7008034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation of Archaeglobus fulgidus AlkA hypoxanthine DNA glycosylase activity.
    Mansfield C; Kerins SM; McCarthy TV
    FEBS Lett; 2003 Apr; 540(1-3):171-5. PubMed ID: 12681503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypoxanthine-DNA glycosylase from Escherichia coli. Partial purification and properties.
    Harosh I; Sperling J
    J Biol Chem; 1988 Mar; 263(7):3328-34. PubMed ID: 2963824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic excision from gamma-irradiated polydeoxyribonucleotides of adenine residues whose imidazole rings have been ruptured.
    Breimer LH
    Nucleic Acids Res; 1984 Aug; 12(16):6359-67. PubMed ID: 6382167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific limited cleavage of bihelical deoxyribonucleic acid by wheat seedling nuclease.
    Kroeker WD; Fairley JL
    J Biol Chem; 1975 May; 250(10):3773-8. PubMed ID: 236302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purine nucleoside phosphorylase. Inosine hydrolysis, tight binding of the hypoxanthine intermediate, and third-the-sites reactivity.
    Kline PC; Schramm VL
    Biochemistry; 1992 Jul; 31(26):5964-73. PubMed ID: 1627539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted deletion of alkylpurine-DNA-N-glycosylase in mice eliminates repair of 1,N6-ethenoadenine and hypoxanthine but not of 3,N4-ethenocytosine or 8-oxoguanine.
    Hang B; Singer B; Margison GP; Elder RH
    Proc Natl Acad Sci U S A; 1997 Nov; 94(24):12869-74. PubMed ID: 9371767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate specificity of 3-methyladenine-DNA glycosylase from calf thymus.
    Male R; Haukanes BI; Helland DE; Kleppe K
    Eur J Biochem; 1987 May; 165(1):13-9. PubMed ID: 3569288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repair of deaminated base damage by Schizosaccharomyces pombe thymine DNA glycosylase.
    Dong L; Mi R; Glass RA; Barry JN; Cao W
    DNA Repair (Amst); 2008 Dec; 7(12):1962-72. PubMed ID: 18789404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and characterization of 3-methyladenine-DNA glycosylase from calf thymus.
    Male R; Helland DE; Kleppe K
    J Biol Chem; 1985 Feb; 260(3):1623-9. PubMed ID: 3968082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incision at hypoxanthine residues in DNA by a mammalian homologue of the Escherichia coli antimutator enzyme endonuclease V.
    Moe A; Ringvoll J; Nordstrand LM; Eide L; Bjørås M; Seeberg E; Rognes T; Klungland A
    Nucleic Acids Res; 2003 Jul; 31(14):3893-900. PubMed ID: 12853604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of DNA structure on hypoxanthine and 1,N(6)-ethenoadenine removal by murine 3-methyladenine DNA glycosylase.
    Wyatt MD; Samson LD
    Carcinogenesis; 2000 May; 21(5):901-8. PubMed ID: 10783310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of the human, rat, Saccharomyces cerevisiae and Escherichia coli 3-methyladenine-DNA glycosylases with DNA containing dIMP residues.
    Saparbaev M; Mani JC; Laval J
    Nucleic Acids Res; 2000 Mar; 28(6):1332-9. PubMed ID: 10684927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A DNA-dependent ATPase of calf-thymus.
    Assairi LM; Johnston IR
    Eur J Biochem; 1979 Aug; 99(1):71-9. PubMed ID: 158529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.