These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 7193857)

  • 1. Virtual elimination of the interference of unstirred water layers on intestinal sugar transport kinetics by use of the tissue accumulation method at appropriate shaking rates.
    Lherminier M; Alvarado F
    Pflugers Arch; 1981 Jan; 389(2):155-8. PubMed ID: 7193857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of sugars and amino acids across guinea pig small intestine.
    Munck BG
    Biochim Biophys Acta; 1980 Apr; 597(2):411-7. PubMed ID: 7370257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An analysis of the D-glucose influx kinetics of in vitro hamster jejunum, based on considerations of the mass-transfer coefficient.
    Dugas MC; Ramaswamy K; Crane RK
    Biochim Biophys Acta; 1975 Apr; 382(4):576-89. PubMed ID: 1125246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. D-galactose transport in rat intestinal brush border membrane vesicles studied with a molecular-sieve technique.
    Bronk JR; Hastewell JG
    J Physiol; 1986 Jun; 375():71-9. PubMed ID: 3795071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of perfusion rate on the kinetics of intestinal sugar absorption in rats and hamsters in vivo.
    Ortiz M; Vázquez A; Lluch M; Ponz F
    Rev Esp Fisiol; 1982 Jun; 38(2):131-42. PubMed ID: 7122970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of region of intestine and unstirred layers on uptake of sugars into rabbit intestine.
    Thomson AB
    Q J Exp Physiol; 1984 Jul; 69(3):497-505. PubMed ID: 6473693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A kinetic study of the interactions between amino acids and monosaccharides at the intestinal brush-border membrane.
    Alvarado F; Robinson JW
    J Physiol; 1979 Oct; 295():457-75. PubMed ID: 521961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of viscous incubation media on the resistance to diffusion of the intestinal unstirred water layer in vitro.
    Johnson IT; Gee JM
    Pflugers Arch; 1982 Apr; 393(2):139-43. PubMed ID: 7099917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of kinetic parameters of a carrier-mediated transport in the perfused intestine by two-dimensional laminar flow model: effects of the unstirred water layer.
    Yuasa H; Miyamoto Y; Iga T; Hanano M
    Biochim Biophys Acta; 1986 Apr; 856(2):219-30. PubMed ID: 3955040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural requirements for active intestinal sugar transport. The involvement of hydrogen bonds at C-1 and C-6 of the sugar.
    Barnett JE; Jarvis WT; Munday KA
    Biochem J; 1968 Aug; 109(1):61-7. PubMed ID: 5669849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenylalanine transport in guinea pig jejunum. A general mechanism for organic solute and sodium cotransport.
    Alvarado F; Lherminier M
    J Physiol (Paris); 1982 Aug; 78(2):131-45. PubMed ID: 7131327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of dietary intake of sodium chloride on sugar and amino acid transport across isolated hen colon.
    Lind J; Munck BG; Olsen O
    J Physiol; 1980 Aug; 305():327-36. PubMed ID: 7441558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic advantage for transport into hamster intestine of glucose generated from phlorizin by brush border beta-glucosidase.
    Hanke DW; Warden DA; Evans JO; Fannin FF; Diedrich DF
    Biochim Biophys Acta; 1980 Jul; 599(2):652-63. PubMed ID: 6773568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel method for kinetic analysis applied to transport by the uniporter OCT2.
    Wright SH; Secomb TW
    Am J Physiol Renal Physiol; 2022 Sep; 323(3):F370-F387. PubMed ID: 35862650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na+-dependent, electroneutral L-ascorbate transport across brush border membrane vesicles from guinea pig small intestine.
    Siliprandi L; Vanni P; Kessler M; Semenza G
    Biochim Biophys Acta; 1979 Mar; 552(1):129-42. PubMed ID: 435492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intestinal diffusion barrier: unstirred water layer or membrane surface mucous coat?
    Smithson KW; Millar DB; Jacobs LR; Gray GM
    Science; 1981 Dec; 214(4526):1241-4. PubMed ID: 7302593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of intestinal sugar transport by phenformin.
    Bolufer J; Lasheras B
    Rev Esp Fisiol; 1975 Dec; 31(4):251-4. PubMed ID: 1215618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired intestinal sugar transport in cirrhotic rats: correction by low doses of insulin-like growth factor I.
    Castilla-Cortazar I; Prieto J; Urdaneta E; Pascual M; Nuñez M; Zudaire E; Garcia M; Quiroga J; Santidrian S
    Gastroenterology; 1997 Oct; 113(4):1180-7. PubMed ID: 9322513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport and utilization of methionine sulfoxide in the rabbit.
    Ganapathy V; Leibach FH
    Biochim Biophys Acta; 1982 Dec; 693(2):305-14. PubMed ID: 7159581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sugar transport by intestine. Escape of galactose from preloaded mucosa of hamster jejunum.
    Baker RD; Lo CS; Nunn AS
    Biochim Biophys Acta; 1975 Sep; 401(3):429-39. PubMed ID: 1182147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.