These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 719524)

  • 1. Synaptic enhancement in fascia dentata: cooperativity among coactive afferents.
    McNaughton BL; Douglas RM; Goddard GV
    Brain Res; 1978 Nov; 157(2):277-93. PubMed ID: 719524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitory modulation of long-term potentiation: evidence for a postsynaptic locus of control.
    Douglas RM; Goddard GV; Riives M
    Brain Res; 1982 May; 240(2):259-72. PubMed ID: 7104688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for two physiologically distinct perforant pathways to the fascia dentata.
    McNaughton BL
    Brain Res; 1980 Oct; 199(1):1-19. PubMed ID: 7407615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term synaptic enhancement and short-term potentiation in rat fascia dentata act through different mechanisms.
    McNaughton BL
    J Physiol; 1982 Mar; 324():249-62. PubMed ID: 7097600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological compensation for loss of afferent synapses in rat hippocampal granule cells during senescence.
    Barnes CA; McNaughton BL
    J Physiol; 1980 Dec; 309():473-85. PubMed ID: 7252877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of long-term potentiation in the rat dentate gyrus by post-trial stimulation of the reticular formation.
    Bloch V; Laroche S
    J Physiol; 1985 Mar; 360():215-31. PubMed ID: 3989714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Commissural inhibition and facilitation of granule cell discharge in fascia dentata.
    Douglas RM; McNaughton BL; Goddard GV
    J Comp Neurol; 1983 Sep; 219(3):285-94. PubMed ID: 6311879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small-caliber afferent inputs produce a heterosynaptic facilitation of the synaptic responses evoked by primary afferent A-fibers in the neonatal rat spinal cord in vitro.
    Thompson SW; Woolf CJ; Sivilotti LG
    J Neurophysiol; 1993 Jun; 69(6):2116-28. PubMed ID: 8350135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploration-dependent modulation of evoked responses in fascia dentata: dissociation of motor, EEG, and sensory factors and evidence for a synaptic efficacy change.
    Green EJ; McNaughton BL; Barnes CA
    J Neurosci; 1990 May; 10(5):1455-71. PubMed ID: 1970602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered synaptic transmission in dentate gyrus of rats reared in complex environments: evidence from hippocampal slices maintained in vitro.
    Green EJ; Greenough WT
    J Neurophysiol; 1986 Apr; 55(4):739-50. PubMed ID: 3009728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path.
    Bliss TV; Lomo T
    J Physiol; 1973 Jul; 232(2):331-56. PubMed ID: 4727084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of afferent fiber activity in hippocampal slices.
    Low WC; Bement SL
    Brain Res; 1980 Oct; 198(2):472-7. PubMed ID: 7407612
    [No Abstract]   [Full Text] [Related]  

  • 13. Time course of changes in long-term potentiation of synaptic transmission following subcortical deafferentation on the rat hippocampus.
    Czéh G; Horváth Z; Czopf J
    Acta Physiol Hung; 1992; 79(1):77-93. PubMed ID: 1337644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sustained enhancement of evoked potentials following brief, high-frequency stimulation of the cerebral cortex in vitro.
    Lee KS
    Brain Res; 1982 May; 239(2):617-23. PubMed ID: 6284309
    [No Abstract]   [Full Text] [Related]  

  • 15. Electrophysiology of dentate granule cells after kainate-induced synaptic reorganization of the mossy fibers.
    Cronin J; Obenaus A; Houser CR; Dudek FE
    Brain Res; 1992 Feb; 573(2):305-10. PubMed ID: 1504768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lateral entorhinal, perirhinal, and amygdala-entorhinal transition projections to hippocampal CA1 and dentate gyrus in the rat: a current source density study.
    Canning KJ; Leung LS
    Hippocampus; 1997; 7(6):643-55. PubMed ID: 9443060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific and nonspecific mechanisms involved in generation of PAD of group Ia afferents in cat spinal cord.
    Jiménez I; Rudomín P; Solodkin M; Vyklický L
    J Neurophysiol; 1984 Nov; 52(5):921-40. PubMed ID: 6096522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms underlying induction of long-term potentiation in rat medial and lateral perforant paths in vitro.
    Colino A; Malenka RC
    J Neurophysiol; 1993 Apr; 69(4):1150-9. PubMed ID: 8492154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beta-adrenergic agonist-induced long-lasting synaptic modifications in hippocampal dentate gyrus require activation of NMDA receptors, but not electrical activation of afferents.
    Dahl D; Sarvey JM
    Brain Res; 1990 Sep; 526(2):347-50. PubMed ID: 1979521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the medial septum and hippocampal theta rhythm in exploration-related synaptic efficacy changes in rat fascia dentata.
    Green EJ; McNaughton BL; Barnes CA
    Brain Res; 1990 Oct; 529(1-2):102-8. PubMed ID: 2178025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.