These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 7195482)
1. Aromatic L-amino acid decarboxylase in rat corpus striatum: implications for action of L-dopa in parkinsonism. Melamed E; Hefti F; Pettibone DJ; Liebman J; Wurtman RJ Neurology; 1981 Jun; 31(6):651-5. PubMed ID: 7195482 [TBL] [Abstract][Full Text] [Related]
2. Nonaminergic striatal neurons convert exogenous L-dopa to dopamine in parkinsonism. Melamed E; Hefti F; Wurtman RJ Ann Neurol; 1980 Dec; 8(6):558-63. PubMed ID: 6260009 [TBL] [Abstract][Full Text] [Related]
3. Localization and functional significance of striatal neurons immunoreactive to aromatic L-amino acid decarboxylase or tyrosine hydroxylase in rat Parkinsonian models. Lopez-Real A; Rodriguez-Pallares J; Guerra MJ; Labandeira-Garcia JL Brain Res; 2003 Apr; 969(1-2):135-46. PubMed ID: 12676374 [TBL] [Abstract][Full Text] [Related]
4. Enhancing aromatic L-amino acid decarboxylase activity: implications for L-DOPA treatment in Parkinson's disease. Hadjiconstantinou M; Neff NH CNS Neurosci Ther; 2008; 14(4):340-51. PubMed ID: 19040557 [TBL] [Abstract][Full Text] [Related]
5. L-Dihydroxyphenylalanine modulates the steady-state expression of mouse striatal tyrosine hydroxylase, aromatic L-amino acid decarboxylase, dopamine and its metabolites in an MPTP mouse model of Parkinson's disease. King JM; Muthian G; Mackey V; Smith M; Charlton C Life Sci; 2011 Oct; 89(17-18):638-43. PubMed ID: 21871902 [TBL] [Abstract][Full Text] [Related]
6. The localization and functional contribution of striatal aromatic L-amino acid decarboxylase to L-3,4-dihydroxyphenylalanine decarboxylation in rodent parkinsonian models. Nakamura K; Ahmed M; Barr E; Leiden JM; Kang UJ Cell Transplant; 2000; 9(5):567-76. PubMed ID: 11144954 [TBL] [Abstract][Full Text] [Related]
7. Aromatic L-amino acid decarboxylase immunoreactive cells in the rat striatum: a possible site for the conversion of exogenous L-DOPA to dopamine. Mura A; Jackson D; Manley MS; Young SJ; Groves PM Brain Res; 1995 Dec; 704(1):51-60. PubMed ID: 8750961 [TBL] [Abstract][Full Text] [Related]
8. The site of dopamine formation in rat striatum after L-dopa administration. Hefti F; Melamed E; Wurtman RJ J Pharmacol Exp Ther; 1981 Apr; 217(1):189-97. PubMed ID: 7205652 [TBL] [Abstract][Full Text] [Related]
9. L-3,4-Dihydroxyphenylalanine and L-5-hydroxytryptophan decarboxylase activities in rat striatum: effect of selective destruction of dopaminergic or serotoninergic input. Melamed E; Hefti F; Wurtman RJ J Neurochem; 1980 Jun; 34(6):1753-6. PubMed ID: 7381499 [No Abstract] [Full Text] [Related]
10. Decarboxylation of exogenous L-DOPA in rat striatum after lesions of the dopaminergic nigrostriatal neurons: the role of striatal capillaries. Melamed E; Hefti F; Wurtman RJ Brain Res; 1980 Sep; 198(1):244-8. PubMed ID: 7407592 [TBL] [Abstract][Full Text] [Related]
11. The roles of striatal serotonin and L -amino-acid decarboxylase on L-DOPA-induced Dyskinesia in a Hemiparkinsonian rat model. Gil S; Park C; Lee J; Koh H Cell Mol Neurobiol; 2010 Aug; 30(6):817-25. PubMed ID: 20232137 [TBL] [Abstract][Full Text] [Related]
12. Transplantation of autologous sympathetic neurons as a potential strategy to restore metabolic functions of the damaged nigrostriatal dopamine nerve terminals in Parkinson's disease. Nakao N; Shintani-Mizushima A; Kakishita K; Itakura T Brain Res Rev; 2006 Sep; 52(2):244-56. PubMed ID: 16644019 [TBL] [Abstract][Full Text] [Related]
13. Mechanisms of the effects of exogenous levodopa on the dopamine-denervated striatum. Lopez A; Muñoz A; Guerra MJ; Labandeira-Garcia JL Neuroscience; 2001; 103(3):639-51. PubMed ID: 11274784 [TBL] [Abstract][Full Text] [Related]
14. Role of aromatic L-amino acid decarboxylase for dopamine replacement by genetically modified fibroblasts in a rat model of Parkinson's disease. Wachtel SR; Bencsics C; Kang UJ J Neurochem; 1997 Nov; 69(5):2055-63. PubMed ID: 9349551 [TBL] [Abstract][Full Text] [Related]
15. Depletion of AADC activity in caudate nucleus and putamen of Parkinson's disease patients; implications for ongoing AAV2-AADC gene therapy trial. Ciesielska A; Samaranch L; San Sebastian W; Dickson DW; Goldman S; Forsayeth J; Bankiewicz KS PLoS One; 2017; 12(2):e0169965. PubMed ID: 28166239 [TBL] [Abstract][Full Text] [Related]
17. Striatal cells containing aromatic L-amino acid decarboxylase: an immunohistochemical comparison with other classes of striatal neurons. Mura A; Linder JC; Young SJ; Groves PM Neuroscience; 2000; 98(3):501-11. PubMed ID: 10869844 [TBL] [Abstract][Full Text] [Related]
18. Immunohistochemical evidence that central serotonin neurons produce dopamine from exogenous L-DOPA in the rat, with reference to the involvement of aromatic L-amino acid decarboxylase. Arai R; Karasawa N; Geffard M; Nagatsu T; Nagatsu I Brain Res; 1994 Dec; 667(2):295-9. PubMed ID: 7697371 [TBL] [Abstract][Full Text] [Related]
19. Levodopa induces long-lasting modification in the functional activity of the nigrostriatal pathway. Riverol M; Ordóñez C; Collantes M; DiCaudo C; Peñuelas I; Arbizu J; Marcilla I; Luquin MR Neurobiol Dis; 2014 Feb; 62():250-9. PubMed ID: 24076099 [TBL] [Abstract][Full Text] [Related]
20. Long-term restoration of striatal L-aromatic amino acid decarboxylase activity using recombinant adeno-associated viral vector gene transfer in a rodent model of Parkinson's disease. Leff SE; Spratt SK; Snyder RO; Mandel RJ Neuroscience; 1999; 92(1):185-96. PubMed ID: 10392841 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]