These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 7195736)

  • 1. Transbilayer distribution of phosphatidylethanolamine in large and small unilamellar vesicles.
    Nordlund JR; Schmidt CF; Dicken SN; Thompson TE
    Biochemistry; 1981 May; 20(11):3237-41. PubMed ID: 7195736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transbilayer distribution in small unilamellar phosphatidylglycerol-phosphatidylcholine vesicles.
    Nordlund JR; Schmidt CF; Thompson TE
    Biochemistry; 1981 Oct; 20(22):6415-20. PubMed ID: 7197988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of cytochrome b5 on the transbilayer distribution of phospholipids in model membranes.
    Nordlund JR; Schmidt CF; Holloway PW; Thompson TE
    Biochemistry; 1982 Jun; 21(12):2820-5. PubMed ID: 7104293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The curvature and cholesterol content of phospholipid bilayers alter the transbilayer distribution of specific molecular species of phosphatidylethanolamine.
    Williams EE; Cooper JA; Stillwell W; Jenski LJ
    Mol Membr Biol; 2000; 17(3):157-64. PubMed ID: 11128974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase behaviour of mixtures of lipid X with phosphatidylcholine and phosphatidylethanolamine.
    Lipka G; Hauser H
    Biochim Biophys Acta; 1989 Feb; 979(2):239-50. PubMed ID: 2923879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transbilayer distributions of red cell membrane phospholipids in unilamellar vesicles.
    Kumar A; Gupta CM
    Biochim Biophys Acta; 1984 Jan; 769(2):419-28. PubMed ID: 6421319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Curvature and composition-dependent lipid asymmetry in phosphatidylcholine vesicles containing phosphatidylethanolamine and gangliosides.
    Thomas PD; Poznansky MJ
    Biochim Biophys Acta; 1989 Jan; 978(1):85-90. PubMed ID: 2914133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of short-chain lecithin with long-chain phospholipids: characterization of vesicles that form spontaneously.
    Gabriel NE; Roberts MF
    Biochemistry; 1986 May; 25(10):2812-21. PubMed ID: 3718923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phospholipid asymmetry in large unilamellar vesicles induced by transmembrane pH gradients.
    Hope MJ; Redelmeier TE; Wong KF; Rodrigueza W; Cullis PR
    Biochemistry; 1989 May; 28(10):4181-7. PubMed ID: 2765480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complement proteins C5b-9 induce transbilayer migration of membrane phospholipids.
    Van der Meer BW; Fugate RD; Sims PJ
    Biophys J; 1989 Nov; 56(5):935-46. PubMed ID: 2605304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short-chain lecithin/long-chain phospholipid unilamellar vesicles: asymmetry, dynamics, and enzymatic hydrolysis of the short-chain component.
    Gabriel NE; Roberts MF
    Biochemistry; 1987 May; 26(9):2432-40. PubMed ID: 3607025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of phosphatidylethanolamine and phosphatidylcholine vesicles produced by treating cholate-phospholipid micelles with cholestyramine.
    Shi SP; Chang CC; Gould GW; Chang TY
    Biochim Biophys Acta; 1989 Jul; 982(2):187-95. PubMed ID: 2752023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface distribution of the fatty acid side chains of phosphatidylethanolamine in mixed phospholipid vesicles.
    Litman BJ
    Biochim Biophys Acta; 1975 Dec; 413(2):157-62. PubMed ID: 1238121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interfacial conformation and transbilayer movement of diacylglycerols in phospholipid bilayers.
    Hamilton JA; Bhamidipati SP; Kodali DR; Small DM
    J Biol Chem; 1991 Jan; 266(2):1177-86. PubMed ID: 1985941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transbilayer redistribution of phosphatidylethanolamine during fusion of phospholipid vesicles. Dependence on fusion rate, lipid phase separation, and formation of nonbilayer structures.
    Hoekstra D; Martin OC
    Biochemistry; 1982 Nov; 21(24):6097-103. PubMed ID: 7150546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A modified spectroscopic method for the determination of the transbilayer distribution of phosphatidylethanolamine in soya-bean asolectin small unilamellar vesicles.
    Sarti P; Molinari A; Arancia G; Meloni A; Citro G
    Biochem J; 1995 Dec; 312 ( Pt 2)(Pt 2):643-8. PubMed ID: 8526881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transbilayer exchange of phosphatidylethanolamine for phosphatidylcholine and N-acetimidoylphosphatidylethanolamine in single-walled bilayer vesicles.
    Roseman M; Litman BJ; Thompson TE
    Biochemistry; 1975 Nov; 14(22):4826-30. PubMed ID: 1182120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of N-(7-nitrobenz-2-oxa-1,3-diazole-4-yl)-labeled lipids in determining transmembrane lipid distribution.
    Balch C; Morris R; Brooks E; Sleight RG
    Chem Phys Lipids; 1994 Apr; 70(2):205-12. PubMed ID: 8033291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca2+ and pH induced fusion of small unilamellar vesicles consisting of phosphatidylethanolamine and negatively charged phospholipids: a freeze fracture study.
    Hope MJ; Walker DC; Cullis PR
    Biochem Biophys Res Commun; 1983 Jan; 110(1):15-22. PubMed ID: 6838506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR studies on phospholipid bilayers. Some factors affecting lipid distribution.
    Berden JA; Barker RW; Radda GK
    Biochim Biophys Acta; 1975 Jan; 375(2):186-208. PubMed ID: 235977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.