BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 7195807)

  • 41. Blood chemistry and skeletal muscle metabolic responses during and after different speeds and durations of trotting.
    Valberg S; Gustavsson BE; Lindholm A; Persson SG
    Equine Vet J; 1989 Mar; 21(2):91-5. PubMed ID: 2707238
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Lactate concentrations after short, maximal exercise at various glycogen levels.
    Jacobs I
    Acta Physiol Scand; 1981 Apr; 111(4):465-9. PubMed ID: 7304208
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Glycogen breakdown and lactate accumulation during high-intensity cycling.
    Medbø JI
    Acta Physiol Scand; 1993 Sep; 149(1):85-9. PubMed ID: 8237426
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Muscle metabolism during prolonged physical exercise in dogs.
    Brzezińska Z
    Arch Int Physiol Biochim; 1987 Nov; 95(4):305-12. PubMed ID: 2453173
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man.
    Bogdanis GC; Nevill ME; Boobis LH; Lakomy HK; Nevill AM
    J Physiol; 1995 Jan; 482 ( Pt 2)(Pt 2):467-80. PubMed ID: 7714837
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Skeletal muscle glycolysis during submaximal exercise following acute beta-adrenergic blockade in man.
    Kaiser P; Tesch PA; Thorsson A; Karlsson J; Kaijser L
    Acta Physiol Scand; 1985 Mar; 123(3):285-91. PubMed ID: 2998155
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Exercise and training during graded leg ischaemia in healthy man with special reference to effects on skeletal muscle.
    Sundberg CJ
    Acta Physiol Scand Suppl; 1994; 615():1-50. PubMed ID: 8140900
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Disposal of lactate during and after strenuous exercise in humans.
    Astrand PO; Hultman E; Juhlin-Dannfelt A; Reynolds G
    J Appl Physiol (1985); 1986 Jul; 61(1):338-43. PubMed ID: 3733622
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phosphocreatine and ATP content in human single muscle fibres before and after maximum dynamic exercise.
    Karatzaferi C; de Haan A; Ferguson RA; van Mechelen W; Sargeant AJ
    Pflugers Arch; 2001 Jun; 442(3):467-74. PubMed ID: 11484780
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Temporary incomplete ischemia of the legs induced by aortic clamping in man: effects on central hemodynamics and skeletal muscle metabolism by adrenergic block.
    Eklöf B; Neglén P; Thomson D
    Ann Surg; 1981 Jan; 193(1):89-98. PubMed ID: 7458455
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Muscle lactate, ATP, and CP levels during exercise after physical training in man.
    Karlsson J; Nordesjö LO; Jorfeldt L; Saltin B
    J Appl Physiol; 1972 Aug; 33(2):199-203. PubMed ID: 5054425
    [No Abstract]   [Full Text] [Related]  

  • 52. Increased IMP content in glycogen-depleted muscle fibres during submaximal exercise in man.
    Norman B; Sollevi A; Jansson E
    Acta Physiol Scand; 1988 May; 133(1):97-100. PubMed ID: 3227908
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phosphocreatine content in single fibers of human muscle after sustained submaximal exercise.
    Sahlin K; Söderlund K; Tonkonogi M; Hirakoba K
    Am J Physiol; 1997 Jul; 273(1 Pt 1):C172-8. PubMed ID: 9252454
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Importance of muscle phosphocreatine during intermittent maximal cycling.
    Trump ME; Heigenhauser GJ; Putman CT; Spriet LL
    J Appl Physiol (1985); 1996 May; 80(5):1574-80. PubMed ID: 8727542
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Use of glycolytic energy sources by human skeletal muscle under anoxic conditions in vitro and during moderate exercise in vivo.
    Rehunen S
    Int J Sports Med; 1988 Jun; 9(3):224-8. PubMed ID: 3410629
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Muscle metabolites with exhaustive static exercise of different duration.
    Karlsson J; Ollander B
    Acta Physiol Scand; 1972 Nov; 86(3):309-14. PubMed ID: 4638697
    [No Abstract]   [Full Text] [Related]  

  • 57. Resynthesis of creatine phosphate in human muscle after exercise in relation to intramuscular pH and availability of oxygen.
    Sahlin K; Harris RC; Hultman E
    Scand J Clin Lab Invest; 1979 Oct; 39(6):551-8. PubMed ID: 43580
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phosphagen and lactate contents of m. quadriceps femoris of man after exercise.
    Harris RC; Sahlin K; Hultman E
    J Appl Physiol Respir Environ Exerc Physiol; 1977 Nov; 43(5):852-7. PubMed ID: 22533
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of passive and active recovery on the resynthesis of muscle glycogen.
    Choi D; Cole KJ; Goodpaster BH; Fink WJ; Costill DL
    Med Sci Sports Exerc; 1994 Aug; 26(8):992-6. PubMed ID: 7968434
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Adenine nucleotide degradation in human skeletal muscle during prolonged exercise.
    Broberg S; Sahlin K
    J Appl Physiol (1985); 1989 Jul; 67(1):116-22. PubMed ID: 2759935
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.