These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 7195987)

  • 1. A reinvestigation of the role of the grey crescent in axis formation in xenopus laevis.
    Gerhart J; Ubbels G; Black S; Hara K; Kirschner M
    Nature; 1981 Aug; 292(5823):511-6. PubMed ID: 7195987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinematics of gray crescent formation in Xenopus eggs: the displacement of subcortical cytoplasm relative to the egg surface.
    Vincent JP; Oster GF; Gerhart JC
    Dev Biol; 1986 Feb; 113(2):484-500. PubMed ID: 3949075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The amphibian egg as a model system for analyzing gravity effects.
    Malacinski GM; Neff AW
    Adv Space Res; 1989; 9(11):169-76. PubMed ID: 11537330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-frequency twinning of Xenopus laevis embryos from eggs centrifuged before first cleavage.
    Black SD; Gerhart JC
    Dev Biol; 1986 Jul; 116(1):228-40. PubMed ID: 3488238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental control of the site of embryonic axis formation in Xenopus laevis eggs centrifuged before first cleavage.
    Black SD; Gerhart JC
    Dev Biol; 1985 Apr; 108(2):310-24. PubMed ID: 4076537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subcellular components of the amphibian egg: insights provided by gravitational studies.
    Neff AW; Ritzenthaler JD; Rosenbaum JF
    Adv Space Res; 1989; 9(11):177-86. PubMed ID: 11537331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytoskeleton and gravity at work in the establishment of dorso-ventral polarity in the egg of Xenopus laevis.
    Ubbels GA; Brom TG
    Adv Space Res; 1984; 4(12):9-18. PubMed ID: 11537800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amphibian egg cytoplasm response to altered g-forces and gravity orientation.
    Neff AW; Smith RC; Malacinski GM
    Adv Space Res; 1986; 6(12):21-8. PubMed ID: 11537823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bifurcation of the amphibian embryo's axis: analysis of variation in response to egg centrifugation.
    Neff AW; Wakahara M; Malacinski GM
    Int J Dev Biol; 1990 Dec; 34(4):391-8. PubMed ID: 2288862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A step in embryonic axis specification in Xenopus laevis is simulated by cytoplasmic displacements elicited by gravity and centrifugal force.
    Black SD
    Adv Space Res; 1989; 9(11):159-68. PubMed ID: 11537329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All components required for the eventual activation of muscle-specific actin genes are localized in the subequatorial region of an uncleaved amphibian egg.
    Gurdon JB; Mohun TJ; Fairman S; Brennan S
    Proc Natl Acad Sci U S A; 1985 Jan; 82(1):139-43. PubMed ID: 3855536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep cytoplasmic rearrangements in axis-respecified Xenopus embryos.
    Denegre JM; Danilchik MV
    Dev Biol; 1993 Nov; 160(1):157-64. PubMed ID: 8224533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response of amphibian egg non-yolk cytoplasm to gravity orientation.
    Smith RC; Neff AW; Malacinski GM
    Physiologist; 1985 Dec; 28(6 Suppl):S91-2. PubMed ID: 3834502
    [No Abstract]   [Full Text] [Related]  

  • 14. Gravitational effects on the rearrangement of cytoplasmic components during axial formation in amphibian development.
    Phillips CR; Whalon B; Moore J; Danilchik M
    Adv Space Res; 1996; 17(6-7):225-35. PubMed ID: 11538621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blastopore formation in the animal hemisphere: functional inversion of gastrulation by centrifugation of Xenopus laevis eggs.
    Black SD; Crutchfield AN; Murphy MD; Swain TC
    Gravit Space Biol Bull; 1998 May; 11(2):15-21. PubMed ID: 11540634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of clinostat rotation on fertilized amphibian egg pattern specification.
    Neff AW; Smith RC; Chung HM; Malacinski GM
    Physiologist; 1984; 27(6 Suppl):S139-40. PubMed ID: 11539005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The first cleavage furrow demarcates the dorsal-ventral axis in Xenopus embryos.
    Klein SL
    Dev Biol; 1987 Mar; 120(1):299-304. PubMed ID: 3817297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Establishment of polarities in the oocyte of Xenopus laevis: the provisional axial symmetry of the full-grown oocyte of Xenopus laevis.
    Ubbels GA
    Cell Mol Life Sci; 1997 Apr; 53(4):382-409. PubMed ID: 9137628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of dorsal development by contact between the cortical dorsal determinant and the equatorial core cytoplasm in eggs of Xenopus laevis.
    Kageura H
    Development; 1997 Apr; 124(8):1543-51. PubMed ID: 9108370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the organization of the amphibian egg cytoplasm: gravitational force as a probe.
    Neff AW; Wakahara M; Yokota H; Malacinski GM
    Adv Space Res; 1992; 12(1):175-80. PubMed ID: 11536955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.