These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 7196223)

  • 1. Environmental modulation of a central pattern generator in freely behaving Aplysia.
    Eberly L; Kanz J; Taylor C; Pinsker H
    Behav Neural Biol; 1981 May; 32(1):21-34. PubMed ID: 7196223
    [No Abstract]   [Full Text] [Related]  

  • 2. Interneurons involved in mediation and modulation of gill-withdrawal reflex in Aplysia. II. Identified neurons produce heterosynaptic facilitation contributing to behavioral sensitization.
    Hawkins RD; Castellucci VF; Kandel ER
    J Neurophysiol; 1981 Feb; 45(2):315-28. PubMed ID: 6257863
    [No Abstract]   [Full Text] [Related]  

  • 3. Comparative aspects of neural circuits for inking behavior and gill withdrawal in Aplysia californica.
    Byrne JH
    J Neurophysiol; 1981 Jan; 45(1):98-106. PubMed ID: 7205346
    [No Abstract]   [Full Text] [Related]  

  • 4. Identification and initial characterization of a cluster of command and pattern-generating neurons underlying respiratory pumping in Aplysia californica.
    Byrne JH
    J Neurophysiol; 1983 Feb; 49(2):491-508. PubMed ID: 6300346
    [No Abstract]   [Full Text] [Related]  

  • 5. Interneurons involved in mediation and modulation of gill-withdrawal reflex in Aplysia. III. Identified facilitating neurons increase Ca2+ current in sensory neurons.
    Hawkins RD
    J Neurophysiol; 1981 Feb; 45(2):327-39. PubMed ID: 6257864
    [No Abstract]   [Full Text] [Related]  

  • 6. Local, reflex, and central commands controlling gill and siphon movements in Aplysia.
    Kupfermann I; Carew TJ; Kandel ER
    J Neurophysiol; 1974 Sep; 37(5):996-1019. PubMed ID: 4370172
    [No Abstract]   [Full Text] [Related]  

  • 7. Non-spiking interactions and local interneurones in the central pattern generator of the crayfish swimmeret system.
    Heitler WJ; Pearson KG
    Brain Res; 1980 Apr; 187(1):206-11. PubMed ID: 7357468
    [No Abstract]   [Full Text] [Related]  

  • 8. Activity of multiple identified motor neurons recorded intracellularly during evoked feedinglike motor programs in Aplysia.
    Church PJ; Lloyd PE
    J Neurophysiol; 1994 Oct; 72(4):1794-809. PubMed ID: 7823102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and characterization of a multifunction neuron contributing to defensive arousal in Aplysia.
    Cleary LJ; Byrne JH
    J Neurophysiol; 1993 Nov; 70(5):1767-76. PubMed ID: 8294951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitization of the gill and siphon withdrawal reflex of Aplysia: multiple sites of change in the neuronal network.
    Trudeau LE; Castellucci VF
    J Neurophysiol; 1993 Sep; 70(3):1210-20. PubMed ID: 8229169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interneurons involved in mediation and modulation of gill-withdrawal reflex in Aplysia. I. Identification and characterization.
    Hawkins RD; Castellucci VF; Kandel ER
    J Neurophysiol; 1981 Feb; 45(2):304-14. PubMed ID: 7463107
    [No Abstract]   [Full Text] [Related]  

  • 12. Inhibitory neuron produces heterosynaptic inhibition of the sensory-to-motor neuron synapse in Aplysia.
    Buonomano DV; Cleary LJ; Byrne JH
    Brain Res; 1992 Apr; 577(1):147-50. PubMed ID: 1521140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuronal changes related to behavioral changes in chronically isolated segments of the medicinal leech.
    Kristan WB
    Brain Res; 1979 May; 167(1):215-20. PubMed ID: 455070
    [No Abstract]   [Full Text] [Related]  

  • 14. Central effect of the secondary endings of muscle stretch receptors in man.
    Mark RF
    Proc Aust Assoc Neurol; 1968; 5(1):41-4. PubMed ID: 4303812
    [No Abstract]   [Full Text] [Related]  

  • 15. Role of pedal ganglia motor neurons in pedal wave generation in Aplysia.
    Fredman SM; Jahan-Parwar B
    Brain Res Bull; 1980; 5(2):179-93. PubMed ID: 7378857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of interganglionic synaptic connections in the control of pedal and parapodial movements in Aplysia.
    Jahan-Parwar B; Freedman SM
    Brain Res Bull; 1979; 4(3):407-20. PubMed ID: 226232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Central representation and integration of sensory inputs from the cardiorenal system of the grape snail].
    Rózsa KS
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1977; 27(6):1224-33. PubMed ID: 202106
    [No Abstract]   [Full Text] [Related]  

  • 18. Neuronal correlates of siphon withdrawal in freely behaving Aplysia.
    Kanz JE; Eberly LB; Cobbs JS; Pinsker HM
    J Neurophysiol; 1979 Nov; 42(6):1538-56. PubMed ID: 501388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity of Ia inhibitory interneurons during fictitious scratch reflex in the cat.
    Deliagina TG; Orlovsky GN
    Brain Res; 1980 Jul; 193(2):439-47. PubMed ID: 7388602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of interneurons in controlling the tail-withdrawal reflex in Aplysia: a network model.
    White JA; Ziv I; Cleary LJ; Baxter DA; Byrne JH
    J Neurophysiol; 1993 Nov; 70(5):1777-86. PubMed ID: 8294952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.