These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 7197334)

  • 1. Effects of dopaminergic drugs on phencyclidine-induced behavior in the rat.
    Castellani S; Adams PM
    Neuropharmacology; 1981 Apr; 20(4):371-4. PubMed ID: 7197334
    [No Abstract]   [Full Text] [Related]  

  • 2. Role of dopaminergic and GABAergic mechanisms in discrete brain areas in phencyclidine-induced locomotor stimulation and turning behavior.
    Yamaguchi K; Nabeshima T; Kameyama T
    J Pharmacobiodyn; 1986 Dec; 9(12):975-86. PubMed ID: 3033192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of agents for stimulation of neostriatal dopaminergic mechanisms.
    Costall B; Naylor RJ; Pinder RM
    J Pharm Pharmacol; 1974 Oct; 26(10):753-6. PubMed ID: 4156532
    [No Abstract]   [Full Text] [Related]  

  • 4. Acute and chronic phencyclidine effects on locomotor activity, stereotypy and ataxia in rats.
    Castellani S; Adams PM
    Eur J Pharmacol; 1981 Jul; 73(2-3):143-54. PubMed ID: 7198045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phencyclidine-induced rotational behavior in rats with nigrostriatal lesions and its modulation by dopaminergic and cholinergic agents.
    Finnegan KT; Kanner MI; Meltzer HY
    Pharmacol Biochem Behav; 1976 Dec; 5(6):651-60. PubMed ID: 15284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential enhancement of behavioral sensitivity to apomorphine following chronic treatment of rats with (-)-sulpiride and haloperidol.
    Montanaro N; Dall'Olio R; Gandolfi O; Vaccheri A
    Eur J Pharmacol; 1982 Jun; 81(1):1-9. PubMed ID: 6889533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of dopaminergic and serotonergic neuronal systems in the prefrontal cortex of rats in phencyclidine-induced behaviors.
    Yamaguchi K; Nabeshima T; Kameyama T
    J Pharmacobiodyn; 1986 Dec; 9(12):987-96. PubMed ID: 3572718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple receptors for brain dopamine in behavior regulation: concept of dopamine-E and dopamine-I receptors.
    Cools AR; van Rossum JM
    Life Sci; 1980 Oct; 27(14):1237-53. PubMed ID: 6255271
    [No Abstract]   [Full Text] [Related]  

  • 9. The effect of amantadine HCl on haloperidol-induced striatal dopamine neuron hypersensitivity.
    Allen RM; Flemenbaum A
    Biol Psychiatry; 1979 Jun; 14(3):541-4. PubMed ID: 573144
    [No Abstract]   [Full Text] [Related]  

  • 10. Haloperidol, but not apomorphine, differentially affects low response rates of male and female Wistar rats.
    Van Hest A; van Haaren F; van de Poll NE
    Pharmacol Biochem Behav; 1988 Mar; 29(3):529-32. PubMed ID: 3362947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential liabilities of haloperidol and thioridazine for inducing apomorphine hypersensitivity.
    De Veaugh-Geiss J; Devanand DP; Carey RJ
    Biol Psychiatry; 1982 Nov; 17(11):1289-301. PubMed ID: 6891268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavioral and biochemical aspects of neuroleptic-induced dopaminergic supersensitivity: studies with chronic clozapine and haloperidol.
    Seeger TF; Thal L; Gardner EL
    Psychopharmacology (Berl); 1982; 76(2):182-7. PubMed ID: 6805029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stereotypy, locomotor and cataleptic effects produced by drugs influencing dopaminergic systems in a mutant strain of Wistar rats: a genuine model of basal ganglia dysfunction?
    Turski L; Schwarz M; Sontag KH
    Behav Brain Res; 1984 Apr; 12(1):29-37. PubMed ID: 6539616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavioural effects of drugs acting on the central dopaminergic neurons.
    Georgiev V; Markovska V
    Act Nerv Super (Praha); 1977 Jul; 19 Suppl 2():335-6. PubMed ID: 575925
    [No Abstract]   [Full Text] [Related]  

  • 15. Blockade of lergotrile or apomorphine induced turning behavior by haloperidol and clozapine.
    Nakamura S; Engel J; Goldstein M
    Commun Psychopharmacol; 1978; 2(3):185-90. PubMed ID: 29742
    [No Abstract]   [Full Text] [Related]  

  • 16. Electrophysiological and behavioral assessments of dopamine autoreceptor activation to apomorphine in rats.
    Okuyama S; Shimamura H; Hashimoto S; Aihara H
    Arch Int Pharmacodyn Ther; 1986 Dec; 284(2):246-54. PubMed ID: 3827410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The development of responsiveness to dopaminergic agonists.
    Reinstein DK; McClearn D; Isaacson RL
    Brain Res; 1978 Jul; 150(1):216-23. PubMed ID: 566610
    [No Abstract]   [Full Text] [Related]  

  • 18. The pathophysiology of tardive dyskinesia.
    Klawans HL; Carvey P; Tanner CM; Goetz CG
    J Clin Psychiatry; 1985 Apr; 46(4 Pt 2):38-41. PubMed ID: 2858479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavioral evidence for dopamine receptor subsensitivity following chronic haloperidol.
    Lynch MR
    Neuropsychobiology; 1990-1991; 24(2):102-8. PubMed ID: 2151972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Behavioural and biochemical alterations following haloperidol treatment and withdrawal: the animal model of tardive dyskinesia reexamined.
    Rastogi SK; Rastogi RB; Singhal RL; Lapierre YD
    Prog Neuropsychopharmacol Biol Psychiatry; 1983; 7(2-3):153-64. PubMed ID: 6137027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.