These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 7197752)

  • 1. Changes in serotonin, but not catecholamine, receptor binding in the brain of morphine-dependent rats.
    Mennini T; Poggesi E; Cotecchia S; De Blasi A; Samanin R
    Mol Pharmacol; 1981 Sep; 20(2):237-9. PubMed ID: 7197752
    [No Abstract]   [Full Text] [Related]  

  • 2. A Na(+)/Cl(-)-dependent transporter for catecholamines, identified as a norepinephrine transporter, is expressed in the brain of the teleost fish medaka (Oryzias latipes).
    Roubert C; Sagné C; Kapsimali M; Vernier P; Bourrat F; Giros B
    Mol Pharmacol; 2001 Sep; 60(3):462-73. PubMed ID: 11502876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain and spinal cord 5-HT2 receptors of morphine-tolerant-dependent and -abstinent rats.
    Gulati A; Bhargava HN
    Eur J Pharmacol; 1989 Aug; 167(2):185-92. PubMed ID: 2591474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of catecholamine binding sites in the rat brain.
    Agrawal AK; Bondy SC
    Neurotoxicology; 1981 Oct; 2(2):365-71. PubMed ID: 6172758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catecholamine reuptake and storage. Overview.
    Bönisch H; Eiden L
    Adv Pharmacol; 1998; 42():149-64. PubMed ID: 9327868
    [No Abstract]   [Full Text] [Related]  

  • 6. 5-HT transporter sites and 5-HT1A and 5-HT3 receptors in Fawn-Hooded rats: a quantitative autoradiography study.
    Chen F; Lawrence AJ
    Alcohol Clin Exp Res; 2000 Jul; 24(7):1093-102. PubMed ID: 10924015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 5-ht5B receptor mRNA in the raphe nuclei: coexpression with serotonin transporter.
    Serrats J; Raurich A; Vilaró MT; Mengod G; Cortés R
    Synapse; 2004 Feb; 51(2):102-11. PubMed ID: 14618677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple receptors for serotonin in the rat brain.
    Hamon M; Nelson DL; Herbet A; Glowinski J
    Adv Biochem Psychopharmacol; 1980; 21():223-33. PubMed ID: 7376970
    [No Abstract]   [Full Text] [Related]  

  • 9. Serotoninergic receptors in brain tissue: properties and identification of various 3H-ligand binding sites in vitro.
    Leysen JE
    J Physiol (Paris); 1981; 77(2-3):351-62. PubMed ID: 7288650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decrease of morphine-induced reward effects and withdrawal symptoms in mice overexpressing gamma-aminobutyric acid transporter I.
    Hu JH; Yang N; Ma YH; Zhou XG; Zhang XY; Jiang J; Mei ZT; Fei J; Guo LH
    J Neurosci Res; 2003 Nov; 74(4):614-21. PubMed ID: 14598306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decreased plasma membrane targeting of NMDA-NR1 receptor subunit in dendrites of medial nucleus tractus solitarius neurons in rats self-administering morphine.
    Glass MJ; Kruzich PJ; Kreek MJ; Pickel VM
    Synapse; 2004 Sep; 53(4):191-201. PubMed ID: 15266550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple 3H-5-hydroxytryptamine binding sites in rat brain.
    Nelson DL; Pedigo NW; Yamamura HI
    J Physiol (Paris); 1981; 77(2-3):369-72. PubMed ID: 7288652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The biochemical analysis of methadone modulation on morphine-induced tolerance and dependence in the rat brain.
    He L; Whistler JL
    Pharmacology; 2007; 79(4):193-202. PubMed ID: 17356311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Opioid receptors altered binding nature in guinea-pig brain following the development of morphine dependence].
    Ohta S; Niwa M; Nozaki M; Hattori M; Shimonaka H; Dohi S
    Masui; 1995 Nov; 44(11):1452-7. PubMed ID: 8544279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Changes in alpha 2-adrenoceptor binding nature in guinea-pig brain following the development of morphine dependence].
    Ohta S; Niwa M; Nozaki M; Asano T; Takeda T; Dohi S
    Masui; 1997 May; 46(5):640-3. PubMed ID: 9185461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corticosterone regulation of serotonin transporter and 5-HT1A receptor expression in the aging brain.
    Maines LW; Keck BJ; Smith JE; Lakoski JM
    Synapse; 1999 Apr; 32(1):58-66. PubMed ID: 10188639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrimination in 5-HT(3) receptor binding in murine brain and cultured cell preparations.
    Zhang ZJ; Trivedi BL; de Paulis T; Schmidt DE; Hewlett WA
    Naunyn Schmiedebergs Arch Pharmacol; 2002 Feb; 365(2):123-32. PubMed ID: 11819030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SarCNU (2-chloroethyl-3-sarcosinamide-1-nitrosourea): a novel analogue of chloroethylnitrosourea that is transported by the catecholamine uptake2 carrier, which mediates increased cytotoxicity.
    Panasci LC; Marcantonio D; Noë AJ
    Cancer Chemother Pharmacol; 1996; 37(6):505-8. PubMed ID: 8612302
    [No Abstract]   [Full Text] [Related]  

  • 19. Catecholamine metabolism in morphine withdrawal in the dog.
    GUNNE LM
    Nature; 1962 Aug; 195():815-6. PubMed ID: 13902966
    [No Abstract]   [Full Text] [Related]  

  • 20. THE EFFECT OF ADDICTION TO AND ABSTINENCE FROM MORPHINE ON RAT TISSUE CATECHOLAMINE AND SEROTONIN LEVELS.
    SLOAN JW; BROOKS JW; EISENMAN AJ; MARTIN WR
    Psychopharmacologia; 1963 May; 4():261-70. PubMed ID: 14048546
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.