These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 7197989)

  • 1. The stereospecific D-glucose transport protein in cholate extracts of human erythrocyte membranes. Molecular sieve chromatography and estimation of molecular weight.
    Acevedo F; Lundahl P; Fröman G
    Biochim Biophys Acta; 1981 Nov; 648(2):254-62. PubMed ID: 7197989
    [No Abstract]   [Full Text] [Related]  

  • 2. The stereospecific D-glucose transport activity of cholate extracts from human erythrocyte membranes.
    Lundahl P; Acevedo F; Fröman G; Phutrakul S
    Biochim Biophys Acta; 1981 Jun; 644(1):101-7. PubMed ID: 7196260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoaffinity labeling of the human erythrocyte D-glucose transporter.
    Carter-Su C; Pessin JE; Mora R; Gitomer W; Czech MP
    J Biol Chem; 1982 May; 257(10):5419-25. PubMed ID: 7200092
    [No Abstract]   [Full Text] [Related]  

  • 4. Effect of cholesterol on the reconstituted D-glucose transport system of human erythrocyte membranes.
    Fröman G
    Tokai J Exp Clin Med; 1982; 7 Suppl():131-3. PubMed ID: 6892255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxyapatite chromatography of the D-glucose transport protein of human erythrocyte membranes.
    Fröman G
    FEBS Lett; 1982 Jul; 143(2):220-4. PubMed ID: 6288459
    [No Abstract]   [Full Text] [Related]  

  • 6. The glucose transport activity of human erythrocyte membranes. Reconstitution in phospholipid liposomes and fractionation by molecular sieve and ion exchange chromatography.
    Fröman G; Acevedo F; Lundahl P; Hjertén S
    Biochim Biophys Acta; 1980 Aug; 600(2):489-501. PubMed ID: 7407124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The reconstitution of the human erythrocyte sugar transporter in planar bilayer membranes.
    Nickson JK; Jones MN
    Biochim Biophys Acta; 1982 Aug; 690(1):31-40. PubMed ID: 6751392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental changes in glucose transport of guinea pig erythrocytes.
    Kondo T; Beutler E
    J Clin Invest; 1980 Jan; 65(1):1-4. PubMed ID: 7350191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose transport carrier of human erythrocytes. Radiation target size measurement based on flux inactivation.
    Cuppoletti J; Jung CY; Green FA
    J Biol Chem; 1981 Feb; 256(3):1305-6. PubMed ID: 7192711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstitution of glucose transport using human erythrocyte band 3.
    Shelton RL; Langdon RG
    Biochim Biophys Acta; 1983 Aug; 733(1):25-33. PubMed ID: 6683973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The permeability of bilayer lipid membranes on the incorporation of erythrocyte membrane extracts and the identification of the monosaccharide transport proteins.
    Phutrakul S; Jones MN
    Biochim Biophys Acta; 1979 Jan; 550(2):188-200. PubMed ID: 758944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maltosyl isothiocyanate: an affinity label for the glucose transporter of the human erythrocyte membrane. 1. Inhibition of glucose transport.
    Mullins RE; Langdon RG
    Biochemistry; 1980 Mar; 19(6):1199-205. PubMed ID: 7189410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunological identification of the human erythrocyte glucose transporter.
    Sogin DC; Hinkle PC
    Proc Natl Acad Sci U S A; 1980 Oct; 77(10):5725-9. PubMed ID: 6934506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Location of the maltosyl isothiocyanate binding site on the human erythrocyte glucose transporter.
    Shelton RL; Langdon RG
    Biochemistry; 1985 May; 24(10):2397-400. PubMed ID: 4040390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and properties of the glucose transporter of human erythrocytes.
    Hirano H; Kasahara M; Nagano M; Osumi M; Sase S; Takata K
    Tokai J Exp Clin Med; 1982; 7 Suppl():121-9. PubMed ID: 6892254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and identification of the glucose transporter of human erythrocytes.
    Sase S; Takata K; Hirano H; Kasahara M
    Biochim Biophys Acta; 1982 Dec; 693(1):253-61. PubMed ID: 6185146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The monosaccharide transporter of the human erythrocyte. Transport activity upon reconstitution.
    Baldwin JM; Gorga JC; Lienhard GE
    J Biol Chem; 1981 Apr; 256(8):3685-9. PubMed ID: 7194337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoaffinity labeling of the human erythrocyte monosaccharide transporter with an aryl azide derivative of D-glucose.
    Shanahan MF; Wadzinski BE; Lowndes JM; Ruoho AE
    J Biol Chem; 1985 Sep; 260(20):10897-900. PubMed ID: 4040910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytochalasin B. A natural photoaffinity ligand for labeling the human erythrocyte glucose transporter.
    Shanahan MF
    J Biol Chem; 1982 Jul; 257(13):7290-3. PubMed ID: 7200980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying the monosaccharide transport protein in the human erythrocyte membrane.
    Jones MN; Nickson JK
    FEBS Lett; 1980 Jun; 115(1):1-8. PubMed ID: 6993234
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.