These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 7198175)

  • 61. Enrichment and photoperiod interact to affect spatial learning and hippocampal dendritic morphology in white-footed mice (Peromyscus leucopus).
    Workman JL; Bowers SL; Nelson RJ
    Eur J Neurosci; 2009 Jan; 29(1):161-70. PubMed ID: 19120443
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Circadian and circannuel fluctuations of pineal metatonin content in Testudo hermanni G. (Reptilia-Chelonia) under natural conditions of photoperiod and temperature (author's transl)].
    Vivien-Roels B; Arendt J
    Ann Endocrinol (Paris); 1979; 40(1):93-4. PubMed ID: 443751
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Top-down approaches to the study of natural variation in complex physiological pathways using the white-footed mouse (Peromyscus leucopus) as a model.
    Heideman PD
    ILAR J; 2004; 45(1):4-13. PubMed ID: 14752203
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Does the circadian pacemaker act through cyclic AMP to drive the melatonin rhythm in chick pineal cells?
    Zatz M
    J Biol Rhythms; 1992; 7(4):301-11. PubMed ID: 1337482
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Temperature-compensated circadian clock in the pineal of Anolis.
    Menaker M; Wisner S
    Proc Natl Acad Sci U S A; 1983 Oct; 80(19):6119-21. PubMed ID: 6577470
    [TBL] [Abstract][Full Text] [Related]  

  • 66. [Circadian rhythm of biosynthetic activity of the epiphysis in relatively wild and domesticated silver foxes].
    Kolesnikova LA
    Genetika; 1997 Aug; 33(8):1144-8. PubMed ID: 9378307
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Photoperiodic responses in Djungarian hamsters (Phodopus sungorus): importance of light history for pineal and serum melatonin profiles.
    Niklowitz P; Lerchl A; Nieschlag E
    Biol Reprod; 1994 Oct; 51(4):714-24. PubMed ID: 7819454
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The pineal gland and mammalian photoperiodism.
    Goldman BD; Darrow JM
    Neuroendocrinology; 1983 Nov; 37(5):386-96. PubMed ID: 6316190
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Comparison of circadian oscillation of melatonin release in pineal cells of house sparrow, pigeon and Japanese quail, using cell perfusion systems.
    Murakami N; Nakamura H; Nishi R; Marumoto N; Nasu T
    Brain Res; 1994 Jul; 651(1-2):209-14. PubMed ID: 7922568
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Diurnal expression of clock genes in pineal gland and brain and plasma levels of melatonin and cortisol in Atlantic salmon parr and smolts.
    Huang TS; Ruoff P; Fjelldal PG
    Chronobiol Int; 2010 Oct; 27(9-10):1697-714. PubMed ID: 20969518
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Preantral intra-ovarian oocyte release in the white-footed mouse, Peromyscus leucopus.
    Spanel-Borowski K; Petterborg LJ; Reiter RJ
    Cell Tissue Res; 1982; 226(2):461-4. PubMed ID: 7127440
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effect of simultaneous exposure to differences in photoperiod and temperature on the seasonal molt and reproductive system of the white-footed mouse, Peromyscus leucopus.
    Lynch GR
    Comp Biochem Physiol A Comp Physiol; 1973 Apr; 44(4):1373-6. PubMed ID: 4145530
    [No Abstract]   [Full Text] [Related]  

  • 73. Metabolic and thermoregulatory effects of photoperiod and melatonin on Peromyscus maniculatus acclimatization.
    Andrews RV; Belknap RW
    Comp Biochem Physiol A Comp Physiol; 1985; 82(3):725-9. PubMed ID: 2866895
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Testosterone does not mediate variation in basal metabolic rate and activity in relation to reproductive condition and photoperiod in white-footed mice (Peromyscus leucopus).
    McDonnell SP; Kaseloo PA; Wran VE; Heideman PD
    J Exp Zool A Ecol Integr Physiol; 2019 Oct; 331(8):456-462. PubMed ID: 31380609
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Seasonal changes in glycogen level and size of pinealocytes of the white-footed mouse, Peromyscus leucopus: a semiquantitative histochemical study.
    Kachi T; Quay WB
    J Pineal Res; 1984; 1(2):163-74. PubMed ID: 6545813
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Photoperiodic regulation of reproductive development in male white-footed mice (Peromyscus leucopus) born at different phases of the breeding season.
    Forger NG; Zucker I
    J Reprod Fertil; 1985 Jan; 73(1):271-8. PubMed ID: 3968658
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Accelerated wound repair in old deer mice (Peromyscus maniculatus) and white-footed mice (Peromyscus leucopus).
    Cohen BJ; Cutler RG; Roth GS
    J Gerontol; 1987 May; 42(3):302-7. PubMed ID: 3571866
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effects of chronic polychlorinated biphenyls exposure on reproductive success of white-footed mice (Peromyscus leucopus).
    Linzey AV
    Arch Environ Contam Toxicol; 1987 Jul; 16(4):455-60. PubMed ID: 3111392
    [No Abstract]   [Full Text] [Related]  

  • 79. Daily melatonin injections: their usefulness in understanding photoperiodism in Peromyscus leucopus.
    Lynch GR; Heath HW; Margolis DJ
    Int J Biometeorol; 1982 Dec; 26(4):305-9. PubMed ID: 7166440
    [No Abstract]   [Full Text] [Related]  

  • 80. Characteristics of a white-footed mouse (Peromyscus leucopus) population inhabiting a polychlorinated biphenyls contaminated site.
    Linzey AV; Grant DM
    Arch Environ Contam Toxicol; 1994 Nov; 27(4):521-6. PubMed ID: 7811110
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.