These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

29 related articles for article (PubMed ID: 7200913)

  • 1. D1 and D2 specific dopamine antagonist modulate the caudate nucleus neuronal responses to chronic methylphenidate exposure.
    Venkataraman S; Claussen C; Dafny N
    J Neural Transm (Vienna); 2017 Feb; 124(2):159-170. PubMed ID: 27853928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Caudate neuronal recording in freely behaving animals following acute and chronic dose response methylphenidate exposure.
    Claussen CM; Dafny N
    Pharmacol Biochem Behav; 2015 Sep; 136():21-30. PubMed ID: 26101057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavioral and neuronal recording of the nucleus accumbens in adolescent rats following acute and repetitive exposure to methylphenidate.
    Frolov A; Reyes-Vasquez C; Dafny N
    J Neurophysiol; 2015 Jan; 113(1):369-79. PubMed ID: 25318764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute administration of methylphenidate alters the prefrontal cortex neuronal activity in a dose-response characteristic.
    Claussen CM; Dafny N
    J Exp Pharmacol; 2014 Feb; 6():1-9. PubMed ID: 24883018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleus accumbens neuronal activity correlates to the animal's behavioral response to acute and chronic methylphenidate.
    Claussen CM; Chong SL; Dafny N
    Physiol Behav; 2014 Apr; 129():85-94. PubMed ID: 24534179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute and chronic dose-response effect of methylphenidate on ventral tegmental area neurons correlated with animal behavior.
    Jones Z; Dafny N
    J Neural Transm (Vienna); 2014; 121(3):327-45. PubMed ID: 24249696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dorsal raphe neuronal activities are modulated by methylphenidate.
    Tang B; Dafny N
    J Neural Transm (Vienna); 2013 May; 120(5):721-31. PubMed ID: 23269378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methylphenidate modulates the locus ceruleus neuronal activity in freely behaving rat.
    Tang B; Dafny N
    Eur J Pharmacol; 2012 Nov; 695(1-3):48-56. PubMed ID: 22995580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleus accumbens neuronal activity in freely behaving rats is modulated following acute and chronic methylphenidate administration.
    Chong SL; Claussen CM; Dafny N
    Brain Res Bull; 2012 Mar; 87(4-5):445-56. PubMed ID: 22248440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo tracer studies of glucose metabolism, cerebral blood flow, and protein synthesis in naloxone precipitated morphine withdrawal.
    Geary WA; Wooten GF
    Neurochem Res; 1987 Jul; 12(7):573-80. PubMed ID: 3614509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Naloxone excites oxytocin neurones in the supraoptic nucleus of lactating rats after chronic morphine treatment.
    Bicknell RJ; Leng G; Lincoln DW; Russell JA
    J Physiol; 1988 Feb; 396():297-317. PubMed ID: 2900890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition by naloxone of tolerance and dependence in mice treated acutely and chronically with morphine.
    Yano I; Takemori AE
    Res Commun Chem Pathol Pharmacol; 1977 Apr; 16(4):721-34. PubMed ID: 16322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Occurrence of morphine tolerance and dependence in the nucleus paragigantocellularis neurons.
    Saiepour MH; Semnanian S; Fathollahi Y
    Eur J Pharmacol; 2001 Jan; 411(1-2):85-92. PubMed ID: 11137862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Responsivity to naloxone during morphine dependence.
    Way EL; Loh HH
    Ann N Y Acad Sci; 1976; 281():252-61. PubMed ID: 14582
    [No Abstract]   [Full Text] [Related]  

  • 15. [The implication of protein kinase C in the cell-cell interaction during the development of dependence on morphine].
    Narita M; Miyatake M; Suzuki M; Suzuki T
    Nihon Yakurigaku Zasshi; 2006 Jan; 127(1):32-5. PubMed ID: 16508221
    [No Abstract]   [Full Text] [Related]  

  • 16. The hypothalamus exhibits electrophysiologic evidence for morphine tolerance and dependence.
    Dafny N
    Exp Neurol; 1982 Jul; 77(1):66-77. PubMed ID: 7200913
    [No Abstract]   [Full Text] [Related]  

  • 17. Reciprocal (push-pull) effects of morphine on single units in the ventromedian and lateral hypothalamus and influences on other nuclei: with a comment on methadone effects during withdrawal from morphine.
    Kerr FW; Triplett JN; Beeler GW
    Brain Res; 1974 Jul; 74(1):81-103. PubMed ID: 4858825
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.