BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 7201830)

  • 1. [Influence of curare and methohexital-Na on the content of energy-rich phosphates and substrates of glycolysis in rat liver (author's transl)].
    Schütz A; Meyer G
    Arzneimittelforschung; 1982; 32(5):522-5. PubMed ID: 7201830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Mechanisms of the protective effect of methohexital on cerebral energy metabolism].
    Hanke J; Krieglstein J
    Arzneimittelforschung; 1982; 32(6):620-5. PubMed ID: 7202367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Comparison of the effects of piracetam and methohexital on cerebral energy metabolism].
    Dirks B; Seibert A; Sperling G; Krieglstein J
    Arzneimittelforschung; 1984; 34(3):258-66. PubMed ID: 6539605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Preliminary results of a pilot study on the influence of pemoline on cerebral concentrations of lactate, pyruvate, creatine, creatinephosphate, ATP, AMP, and ADP (author's transl)].
    Hemmer B; Heinz F
    Arzneimittelforschung; 1980; 30(5):771-3. PubMed ID: 7190418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adrenergic blockade reduces skeletal muscle glycolysis and Na(+), K(+)-ATPase activity during hemorrhage.
    McCarter FD; James JH; Luchette FA; Wang L; Friend LA; King JK; Evans JM; George MA; Fischer JE
    J Surg Res; 2001 Aug; 99(2):235-44. PubMed ID: 11469892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphoenolpyruvate prevents the decline in hepatic ATP and energy charge after ischemia and reperfusion injury in rats.
    Saiki S; Yamaguchi K; Chijiiwa K; Shimizu S; Hamasaki N; Tanaka M
    J Surg Res; 1997 Nov; 73(1):59-65. PubMed ID: 9441794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy state, glycolytic intermediates and mitochondrial function in the liver during reversible and irreversible endotoxin shock.
    Kopprasch S; Hörkner U; Orlik H; Kemmer C; Scheuch DW
    Biomed Biochim Acta; 1989; 48(9):653-9. PubMed ID: 2619734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of insulin and glucose during resuscitation from hemorrhagic shock increases hepatic ATP.
    Chang CG; Van Way CW; Dhar A; Helling T; Hahn Y
    J Surg Res; 2000 Aug; 92(2):171-6. PubMed ID: 10896818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy status and oxidation-reduction status in rat liver at high altitude (3.8 km).
    Reed RD; Pace N
    Aviat Space Environ Med; 1980 May; 51(5):448-53. PubMed ID: 7387568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of methohexital on the relationship between hexokinase distribution and energy metabolism in neuroblastoma cells.
    Krieglstein J; Mwasekaga S
    Arzneimittelforschung; 1987 Mar; 37(3):291-5. PubMed ID: 3593443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Response of adenine nucleotide metabolism in the aged rat liver to fasting and succinate injections].
    Kaminskiĭ IuG; Kosenko EA; Kondrashova MN
    Biokhimiia; 1982 Apr; 47(4):654-9. PubMed ID: 7082695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycolysis in contracting rat skeletal muscle is controlled by factors related to energy state.
    Ortenblad N; Macdonald WA; Sahlin K
    Biochem J; 2009 May; 420(2):161-8. PubMed ID: 19250062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationships between cytosolic [ATP], [ATP]/[ADP] and ionic fluxes in the perfused rat heart: A 31P, 23Na and 87Rb NMR study.
    Stewart LC; Deslauriers R; Kupriyanov VV
    J Mol Cell Cardiol; 1994 Oct; 26(10):1377-92. PubMed ID: 7869398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The importance of calcium-related effects on energetics at hypothermia: effects of membrane-channel antagonists on energy metabolism of rat liver.
    Churchill TA; Green CJ; Fuller BJ
    Cryobiology; 1995 Oct; 32(5):477-86. PubMed ID: 7587285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose dependence of glycolysis, hexose monophosphate shunt activity, energy status, and the polyol pathway in retinas isolated from normal (nondiabetic) rats.
    Winkler BS; Arnold MJ; Brassell MA; Sliter DR
    Invest Ophthalmol Vis Sci; 1997 Jan; 38(1):62-71. PubMed ID: 9008631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of amphiphilic phenylalkyl derivatives on platelet energy metabolism. Stimulation of glycolysis through activation of membrane ATPase.
    Patscheke H; Brossmer R
    Arzneimittelforschung; 1978; 28(9):1546-50. PubMed ID: 157741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic effects of carbenoxolone in rat liver.
    Pivato LS; Constantin RP; Ishii-Iwamoto EL; Kelmer-Bracht AM; Yamamoto NS; Constantin J; Bracht A
    J Biochem Mol Toxicol; 2006; 20(5):230-40. PubMed ID: 17009240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of dietary taurine supplementation on GSH and NAD(P)-redox status, lipid peroxidation, and energy metabolism in diabetic precataractous lens.
    Obrosova IG; Stevens MJ
    Invest Ophthalmol Vis Sci; 1999 Mar; 40(3):680-8. PubMed ID: 10067971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of nitric oxide donors on energy metabolism of rat erythrocytes.
    Maletic SD; Dragicevic-Djokovic LM; Zikic RV; Stajn AS; Milenkovic P; Kostic MM
    J Environ Pathol Toxicol Oncol; 2000; 19(4):383-90. PubMed ID: 11213021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of nitric oxide donor, isosorbide dinitrate, on energy metabolism of rat reticulocytes.
    Maletić SD; Dragicević LM; Zikić RV; Stajn AS; Kostić MM
    Physiol Res; 1999; 48(6):417-27. PubMed ID: 10783906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.