These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 7202207)

  • 1. Tetrahydroisoquinoline and opioid substrates of alcohol actions.
    Altshuler HL; Shippenberg TS
    Prog Clin Biol Res; 1982; 90():329-44. PubMed ID: 7202207
    [No Abstract]   [Full Text] [Related]  

  • 2. Relating TIQ's, opiates, and ethanol.
    Sinclair JD; Rusi M; Airaksinen MM; Altshuler HL
    Prog Clin Biol Res; 1982; 90():365-76. PubMed ID: 7202209
    [No Abstract]   [Full Text] [Related]  

  • 3. Tetrahydroisoquinolines and alcoholism: where are we today?
    Myers RD
    Alcohol Clin Exp Res; 1996 May; 20(3):498-500. PubMed ID: 8727243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opiates and alcohol self-administration in animals.
    Ulm RR; Volpicelli JR; Volpicelli LA
    J Clin Psychiatry; 1995; 56 Suppl 7():5-14. PubMed ID: 7673105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tetrahydroisoquinolines after ethanol consumption.
    Hirst M; Adams MA; Okamoto S; Gowdey CW; Evans DR; LeBarr JM
    Prog Clin Biol Res; 1982; 90():81-96. PubMed ID: 7111328
    [No Abstract]   [Full Text] [Related]  

  • 6. A novel and neurotoxic tetrahydroisoquinoline derivative in vivo: formation of 1,3-dimethyl-1,2,3,4-tetrahydroisoquinoline, a condensation product of amphetamines, in brains of rats under chronic ethanol treatment.
    Makino Y; Ohta S; Tasaki Y; Tachikawa O; Kashiwasake M; Hirobe M
    J Neurochem; 1990 Sep; 55(3):963-9. PubMed ID: 2384762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model to estimate the in vivo level of tetrahydroisoquinoline in brain during the consumption of ethanol.
    Weiner H
    Prog Clin Biol Res; 1982; 90():69-79. PubMed ID: 7111327
    [No Abstract]   [Full Text] [Related]  

  • 8. Chronic intraventricular administration of tetrahydroisoquinoline alkaloids: lack of effect on voluntary ethanol consumption in the rat.
    Smith BR; Brown ZW; Amit Z
    Subst Alcohol Actions Misuse; 1980; 1(2):209-21. PubMed ID: 7197808
    [No Abstract]   [Full Text] [Related]  

  • 9. A metabolic approach to the detection of tetrahydroisoquinoline formation from 3H-dopamine in rat brain following treatment with ethanol or chloral hydrate.
    Shier WT; Koda LY; Bloom FE
    Prog Clin Biol Res; 1982; 90():191-200. PubMed ID: 7111319
    [No Abstract]   [Full Text] [Related]  

  • 10. Does the blockade of opioid receptors influence the development of ethanol dependence?
    Kotlińska J; Langwiński R
    Alcohol Alcohol; 1987; 22(2):117-9. PubMed ID: 2820433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alteration of ethanol self-administration by naltrexone.
    Altshuler HL; Phillips PE; Feinhandler DA
    Life Sci; 1980 Mar; 26(9):679-88. PubMed ID: 6767889
    [No Abstract]   [Full Text] [Related]  

  • 12. Absence of a role for salsolinol in the mechanism of ethanol teratogenicity.
    Nesterick CA; Rahwan RG
    Dev Pharmacol Ther; 1981; 3(2):99-107. PubMed ID: 7198572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TIQs block the development of environment dependent tolerance to ethanol.
    Melchior CL
    Prog Clin Biol Res; 1982; 90():377-85. PubMed ID: 7202210
    [No Abstract]   [Full Text] [Related]  

  • 14. Voluntary alcohol consumption and plasma beta-endorphin levels in alcohol-preferring rats chronically treated with naltrexone.
    Zalewska-Kaszubska J; Gorska D; Dyr W; Czarnecka E
    Physiol Behav; 2008 Mar; 93(4-5):1005-10. PubMed ID: 18262210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Memantine enhances the inhibitory effects of naltrexone on ethanol consumption.
    Kuzmin A; Stenback T; Liljequist S
    Eur J Pharmacol; 2008 Apr; 584(2-3):352-6. PubMed ID: 18339371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antagonist treatment of opioid withdrawal translational low dose approach.
    Mannelli P; Gottheil E; Van Bockstaele EJ
    J Addict Dis; 2006; 25(2):1-8. PubMed ID: 16785213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of selective antagonism of mu(1)-, mu(1/2)-, mu(3)-, and delta-opioid receptors on the locomotor-stimulating actions of ethanol.
    Pastor R; Sanchis-Segura C; Aragon CM
    Drug Alcohol Depend; 2005 Jun; 78(3):289-95. PubMed ID: 15893160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective delta-opioid receptor antagonist N,N(CH3)2-Dmt-Tic-OH does not reduce ethanol intake in alcohol-preferring AA rats.
    Ingman K; Salvadori S; Lazarus L; Korpi ER; Honkanen A
    Addict Biol; 2003 Jun; 8(2):173-9. PubMed ID: 12850776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alcohol addiction: are the endogenous opioids involved?
    Tregear GW; Coghlan JP
    Aust N Z J Med; 1981 Apr; 11(2):118-22. PubMed ID: 6268033
    [No Abstract]   [Full Text] [Related]  

  • 20. An examination of the role of TIQ alkaloids in alcohol intake: reinforcers, satiety agents or artifacts.
    Amit Z; Smith BR; Brown ZW; Williams RL
    Prog Clin Biol Res; 1982; 90():345-64. PubMed ID: 7202208
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.