BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 7202266)

  • 1. Ultrastructure of the human intervertebral disc. I. Changes in notochordal cells with age.
    Trout JJ; Buckwalter JA; Moore KC; Landas SK
    Tissue Cell; 1982; 14(2):359-69. PubMed ID: 7202266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunohistochemical identification of notochordal markers in cells in the aging human lumbar intervertebral disc.
    Weiler C; Nerlich AG; Schaaf R; Bachmeier BE; Wuertz K; Boos N
    Eur Spine J; 2010 Oct; 19(10):1761-70. PubMed ID: 20372940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large Cytoplasmic Vacuoles within Notochordal Nucleus Pulposus Cells: A Possible Regulator of Intracellular Pressure That Shapes the Cytoskeleton and Controls Proliferation.
    Hong X; Zhang C; Wang F; Wu XT
    Cells Tissues Organs; 2018; 206(1-2):9-15. PubMed ID: 30282069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastructure of the human intervertebral disc during aging and degeneration: comparison of surgical and control specimens.
    Gruber HE; Hanley EN
    Spine (Phila Pa 1976); 2002 Apr; 27(8):798-805. PubMed ID: 11935100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrastructure of the human intervertebral disc: II. Cells of the nucleus pulposus.
    Trout JJ; Buckwalter JA; Moore KC
    Anat Rec; 1982 Dec; 204(4):307-14. PubMed ID: 7181135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrastructure of the rostral notochord of the 35-day rhesus monkey (Macaca mulatta) embryo.
    Jerome CP; Hendrickx AG
    Acta Anat (Basel); 1988; 132(1):35-40. PubMed ID: 3400416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Notochordal cell produce and assemble extracellular matrix in a distinct manner, which may be responsible for the maintenance of healthy nucleus pulposus.
    Cappello R; Bird JL; Pfeiffer D; Bayliss MT; Dudhia J
    Spine (Phila Pa 1976); 2006 Apr; 31(8):873-82; discussion 883. PubMed ID: 16622374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrastructure of the nucleus pulposus in the intervertebral disc after systemic administration of hydrocortisone in mice.
    Higuchi M; Abe K
    Spine (Phila Pa 1976); 1985 Sep; 10(7):638-43. PubMed ID: 4071273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acid phosphatase activity in yolk droplets of chick notochordal cells.
    Kayahara T
    Histochem J; 1983 Jan; 15(1):71-7. PubMed ID: 6682097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The three-dimensional architecture of the notochordal nucleus pulposus: novel observations on cell structures in the canine intervertebral disc.
    Hunter CJ; Matyas JR; Duncan NA
    J Anat; 2003 Mar; 202(Pt 3):279-91. PubMed ID: 12713268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of the notochord in human embryos: ultrastructural, histochemical, and immunohistochemical studies.
    Shinohara H; Tanaka O
    Anat Rec; 1988 Feb; 220(2):171-8. PubMed ID: 3354859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age-related changes in the nucleus pulposus of intervertebral disc in mice. An electronmicroscopic study.
    Higuchi M; Kaneda K; Abe K
    Nihon Seikeigeka Gakkai Zasshi; 1982 Apr; 56(4):321-9. PubMed ID: 7097095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The notochord of the newborn opossum and its fate during postnatal development.
    Krause WJ; Cutts JH
    Arch Histol Jpn; 1982 May; 45(2):155-65. PubMed ID: 7125861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The fine localization of acid phosphatase activity in the unvacuolated notochordal cells of the early chick embryo.
    Kayahara T
    Histochem J; 1982 May; 14(3):347-60. PubMed ID: 7118565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Native nucleus pulposus tissue matrix promotes notochordal differentiation of human induced pluripotent stem cells with potential for treating intervertebral disc degeneration.
    Liu Y; Fu S; Rahaman MN; Mao JJ; Bal BS
    J Biomed Mater Res A; 2015 Mar; 103(3):1053-9. PubMed ID: 24889905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An electron microscopic analysis of notochordal and mesenchymal cell abnormalities in embryos of Danforth's short-tail (Sd) mice.
    Wilson DB; Finta LA; Center EM; Paavola LG
    Virchows Arch B Cell Pathol Incl Mol Pathol; 1982; 39(1):101-10. PubMed ID: 6123176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human ecchordosis physaliphora and chick embryonic notochord. A comparative electron microscopic study.
    Horten BC; Montague SR
    Virchows Arch A Pathol Anat Histol; 1976 Oct; 371(4):295-303. PubMed ID: 824802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The human muscle-tendon junction. A morphological study during normal growth and at maturity.
    Ovalle WK
    Anat Embryol (Berl); 1987; 176(3):281-94. PubMed ID: 3631532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hepatocyte differentiation during early fetal development in the rat.
    Luzzatto AC
    Cell Tissue Res; 1981; 215(1):133-42. PubMed ID: 7226191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The morphology of normal human bladder urothelium.
    Jost SP; Gosling JA; Dixon JS
    J Anat; 1989 Dec; 167():103-15. PubMed ID: 2630525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.