These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 7202719)

  • 61. Microbiology: proteins that bind the beta-lactam antibiotics.
    Coulson AF
    Nature; 1984 Jun 21-27; 309(5970):668. PubMed ID: 6374473
    [No Abstract]   [Full Text] [Related]  

  • 62. Molecular genetics of methicillin-resistant Staphylococcus aureus.
    Hiramatsu K; Katayama Y; Yuzawa H; Ito T
    Int J Med Microbiol; 2002 Jul; 292(2):67-74. PubMed ID: 12195737
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Evolution of an inducible penicillin-target protein in methicillin-resistant Staphylococcus aureus by gene fusion.
    Song MD; Wachi M; Doi M; Ishino F; Matsuhashi M
    FEBS Lett; 1987 Aug; 221(1):167-71. PubMed ID: 3305073
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Methods for identifying methicillin resistancein Staphylococcus aureus.
    Smyth RW; Kahlmeter G; Olsson Liljequist B; Hoffman B
    J Hosp Infect; 2001 Jun; 48(2):103-7. PubMed ID: 11428876
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Resistance to antibiotics mediated by target alterations.
    Spratt BG
    Science; 1994 Apr; 264(5157):388-93. PubMed ID: 8153626
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The effect of a component of tea (Camellia sinensis) on methicillin resistance, PBP2' synthesis, and beta-lactamase production in Staphylococcus aureus.
    Yam TS; Hamilton-Miller JM; Shah S
    J Antimicrob Chemother; 1998 Aug; 42(2):211-6. PubMed ID: 9738838
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Serine beta-lactamases and penicillin-binding proteins.
    Ghuysen JM
    Annu Rev Microbiol; 1991; 45():37-67. PubMed ID: 1741619
    [No Abstract]   [Full Text] [Related]  

  • 68. Antibiotic resistance in gram-positive bacteria: epidemiological aspects.
    Witte W
    J Antimicrob Chemother; 1999 Sep; 44 Suppl A():1-9. PubMed ID: 10511391
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Efficacy of cefoperazone in combination with sulbactam in experimental Staphylococcus aureus endocarditis in rabbits.
    Chambers HF; Fournier MA
    J Antimicrob Chemother; 1993 Sep; 32(3):453-8. PubMed ID: 8262867
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Analysis of Staphylococcus aureus genes encoding penicillin-binding protein 4 and an ABC-type transporter.
    Domanski TL; Bayles KW
    Gene; 1995 Dec; 167(1-2):111-3. PubMed ID: 8566760
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Different staphylococcal species contain various numbers of penicillin-binding proteins ranging from four (Staphylococcus aureus) to only one (Staphylococcus hyicus).
    Canepari P; Varaldo PE; Fontana R; Satta G
    J Bacteriol; 1985 Aug; 163(2):796-8. PubMed ID: 4019416
    [TBL] [Abstract][Full Text] [Related]  

  • 72. FemABX peptidyl transferases: a link between branched-chain cell wall peptide formation and beta-lactam resistance in gram-positive cocci.
    Rohrer S; Berger-Bächi B
    Antimicrob Agents Chemother; 2003 Mar; 47(3):837-46. PubMed ID: 12604510
    [No Abstract]   [Full Text] [Related]  

  • 73. On the relationships between molecular conformation, affinity towards penicillin-binding proteins, and biological activity of penicillin G-sulfoxide.
    Beise F; Labischinski H; Bradaczek H
    Z Naturforsch C J Biosci; 1988; 43(9-10):656-64. PubMed ID: 3245263
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Carbenicillin resistance of Pseudomonas aeruginosa.
    Rodríguez-Tebar A; Rojo F; Dámaso D; Vázquez D
    Antimicrob Agents Chemother; 1982 Aug; 22(2):255-61. PubMed ID: 6821456
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Inactivated pbp4 in highly glycopeptide-resistant laboratory mutants of Staphylococcus aureus.
    Sieradzki K; Pinho MG; Tomasz A
    J Biol Chem; 1999 Jul; 274(27):18942-6. PubMed ID: 10383392
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Dispersed mode of Staphylococcus aureus cell wall synthesis in the absence of the division machinery.
    Pinho MG; Errington J
    Mol Microbiol; 2003 Nov; 50(3):871-81. PubMed ID: 14617148
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Penicillin-binding proteins in Streptomyces strains.
    Nakazawa H; Horikawa S; Ogawara H
    J Antibiot (Tokyo); 1981 Aug; 34(8):1070-2. PubMed ID: 7319922
    [No Abstract]   [Full Text] [Related]  

  • 78. Mutation of Salmonella paratyphi A conferring cross-resistance to several groups of antibiotics by decreased permeability and loss of invasiveness.
    Gutmann L; Billot-Klein D; Williamson R; Goldstein FW; Mounier J; Acar JF; Collatz E
    Antimicrob Agents Chemother; 1988 Feb; 32(2):195-201. PubMed ID: 3364943
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A novel strategy for in vitro selection of peptide-drug conjugates.
    Li S; Roberts RW
    Chem Biol; 2003 Mar; 10(3):233-9. PubMed ID: 12670537
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Association of penicillin-binding proteins and other enzymes with the ribosome-free membrane fraction of Bacillus subtilis.
    Caulfield MP; Tai PC; Davis BD
    J Bacteriol; 1983 Oct; 156(1):1-5. PubMed ID: 6311793
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.