These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 7203)

  • 1. Mg2+ and the permeability of heart mitochondria to monovalent cations.
    Wehrle JP; Jurkowitz M; Scott KM; Brierley GP
    Arch Biochem Biophys; 1976 May; 174(1):313-23. PubMed ID: 7203
    [No Abstract]   [Full Text] [Related]  

  • 2. Ion transport in heart mitochondria. 8. The effect of ethylenediaminetertraacetate on monovalent ion uptake.
    Settlemire CT; Hunter GR; Brierley GP
    Biochim Biophys Acta; 1968 Nov; 162(4):487-99. PubMed ID: 4973276
    [No Abstract]   [Full Text] [Related]  

  • 3. Energy-dependent contraction of swollen mitochondria: activation by nigericin.
    Brierley GP; Jurkowitz M; Chávez E
    Biochem Biophys Res Commun; 1977 Jan; 74(1):235-41. PubMed ID: 13791
    [No Abstract]   [Full Text] [Related]  

  • 4. Ion transport by heart mitochondria. XXII. Spontaneous, energy-linked accumulation of acetate and phosphate salts of monovalent cations.
    Brierley GP; Jurkowitz M; Scott KM; Merola AJ
    Arch Biochem Biophys; 1971 Dec; 147(2):545-56. PubMed ID: 5136102
    [No Abstract]   [Full Text] [Related]  

  • 5. Ion transport by heart mitochondria. XII. Activation of monovalent cation uptake by sulfhydrly group reagents.
    Brierley GP; Knight VA; Settlemire CT
    J Biol Chem; 1968 Oct; 243(19):5035-43. PubMed ID: 4971346
    [No Abstract]   [Full Text] [Related]  

  • 6. Ion transport by heart mitochondria. Retention and loss of energy coupling in aged heart mitochondria.
    Jurkowitz M; Scott KM; Altschuld RA; Merola AJ; Brierley GP
    Arch Biochem Biophys; 1974 Nov; 165(1):98-113. PubMed ID: 4280266
    [No Abstract]   [Full Text] [Related]  

  • 7. Passive permeability and energy-linked ion movements in isolated heart mitochondria.
    Brierley GP
    Ann N Y Acad Sci; 1974 Feb; 227():398-411. PubMed ID: 4133306
    [No Abstract]   [Full Text] [Related]  

  • 8. Uncouplers and the molecular mechanism of uncoupling in mitochondria.
    Kessler RJ; Vande Zande H; Tyson CA; Blondin GA; Fairfield J; Glasser P; Green DE
    Proc Natl Acad Sci U S A; 1977 Jun; 74(6):2241-5. PubMed ID: 142250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The uptake and extrusion of monovalent cations by isolated heart mitochondria.
    Brierley GP
    Mol Cell Biochem; 1976 Jan; 10(1):41-63. PubMed ID: 2858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of mitochondrial swelling by mg2+. The relation of ion transport to structural changes.
    Dow DS; Walton KG; Fleischer S
    J Bioenerg; 1971 Sep; 1(3):247-71. PubMed ID: 5002678
    [No Abstract]   [Full Text] [Related]  

  • 11. Competitive inhibition of valinomycin-induced K+-transport by Mg2+-ions in liver mitochondria.
    Ligeti E; Fonyó A
    FEBS Lett; 1977 Jul; 79(1):33-6. PubMed ID: 891931
    [No Abstract]   [Full Text] [Related]  

  • 12. On the mechanism of energy-dependent contraction of swollen mitochondria.
    Brierley GP; Jurkowitz M
    Biochem Biophys Res Commun; 1976 Jan; 68(1):82-8. PubMed ID: 55123
    [No Abstract]   [Full Text] [Related]  

  • 13. Energy-dependent efflux of K+ from heart mitochondria.
    Chavez E; Jung DW; Brierley GP
    Biochem Biophys Res Commun; 1977 Mar; 75(1):69-75. PubMed ID: 403915
    [No Abstract]   [Full Text] [Related]  

  • 14. Matrix magnesium and the permeability of heart mitochondria to potassium ion.
    Jung DW; Brierley GP
    J Biol Chem; 1986 May; 261(14):6408-15. PubMed ID: 3084482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of transmembrane proton transfer by mercurials in mitochondria. II. Release of a Na+-K+ ionophore.
    Southard JH; Blondin GA; Green DE
    J Biol Chem; 1974 Feb; 249(3):678-81. PubMed ID: 4130102
    [No Abstract]   [Full Text] [Related]  

  • 16. Energy-dependent exchange of K+ in heart mitochondria. K+ influx.
    Jung DW; Chávez E; Brierley GP
    Arch Biochem Biophys; 1977 Oct; 183(2):452-9. PubMed ID: 21617
    [No Abstract]   [Full Text] [Related]  

  • 17. Effects of guanidine derivatives on mitochondrial function. 3. The mechanism of phenethylbiguanide accumulation and its relationship to in vitro respiratory inhibition.
    Davidoff F
    J Biol Chem; 1971 Jun; 246(12):4017-27. PubMed ID: 5561472
    [No Abstract]   [Full Text] [Related]  

  • 18. Isolation of ionophores from mitochondria.
    Blondin GA
    Ann N Y Acad Sci; 1974 Feb; 227():392-7. PubMed ID: 4524340
    [No Abstract]   [Full Text] [Related]  

  • 19. The isolation and properties of a peptide ionophore from beef heart mitochondria.
    Blondin GA; DeCastro AF; Senior AE
    Biochem Biophys Res Commun; 1971 Apr; 43(1):28-35. PubMed ID: 5579947
    [No Abstract]   [Full Text] [Related]  

  • 20. Ion transport by heart mitochondria. XXI. Differential effects of mercurial reagents on adenosine triphosphatase activity and on adenosine triphosphate-dependent swelling and contraction.
    Brierley GP; Scott KM; Jurkowitz M
    J Biol Chem; 1971 Apr; 246(7):2241-51. PubMed ID: 4252222
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.