These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 7203298)

  • 1. Lysis of rabbit polymorphonuclear leucocyte granules by surfactants of differing structure and irritancy.
    Gibson WT
    Food Cosmet Toxicol; 1980 Oct; 18(5):511-5. PubMed ID: 7203298
    [No Abstract]   [Full Text] [Related]  

  • 2. A novel approach to the search for in vitro alternatives to in vivo eye irritancy testing.
    Muir CK; Flower C; Van Abbé NJ
    Toxicol Lett; 1983 Aug; 18(1-2):1-5. PubMed ID: 6623530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skin irritancy of commercially available alkyl ether sulphate surfactants: is there a difference between those with alkyl chains consisting of even or odd numbers of carbon atoms?
    Pemberton MA; Rhodes C
    Toxicol Lett; 1988 Nov; 44(1-2):85-90. PubMed ID: 2847369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A rapid cell culture technique for assessing the toxicity of detergent-based products in vitro as a possible screen for eye irritancy in vivo.
    Kemp RB; Meredith RW; Gamble S; Frost M
    Cytobios; 1983; 36(143-44):153-9. PubMed ID: 6851660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An in vitro cytotoxicity test to predict the ocular irritation potential of detergents and detergent products.
    Scaife MC
    Food Chem Toxicol; 1985 Feb; 23(2):253-8. PubMed ID: 4040073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative measurement of acute corneal injury in rabbits with surfactants of different type and irritancy.
    Maurer JK; Parker RD; Petroll WM; Carr GJ; Cavanagh HD; Jester JV
    Toxicol Appl Pharmacol; 1999 Jul; 158(1):61-70. PubMed ID: 10387933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The isolation and properties of the specific cytoplasmic granules of rabbit polymorphonuclear leucocytes.
    COHN ZA; HIRSCH JG
    J Exp Med; 1960 Dec; 112(6):983-1004. PubMed ID: 13694490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ocular irritation: microscopic changes occurring over time in the rat with surfactants of known irritancy.
    Maurer JK; Parker RD; Carr GJ
    Toxicol Pathol; 1998; 26(2):217-25. PubMed ID: 9547859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opacity of bovine cornea in vitro induced by surfactants and industrial chemicals compared with ocular irritancy in vivo.
    Muir CK
    Toxicol Lett; 1985; 24(2-3):157-62. PubMed ID: 3983968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of the eye irritation potential of shampoos using the in vitro SIRC cell toxicity test.
    North-Root H; Yackovich F; Demetrulias J; Gacula M; Heinze JE
    Food Chem Toxicol; 1985 Feb; 23(2):271-3. PubMed ID: 4040076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association of the alkaline phosphatase of rabbit polymorphonuclear leukocytes with the membrane of the specific granules.
    Bretz U; Baggiolini M
    J Cell Biol; 1973 Dec; 59(3):696-707. PubMed ID: 4761336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confocal microscopic characterization of initial corneal changes of surfactant-induced eye irritation in the rabbit.
    Maurer JK; Li HF; Petroll WM; Parker RD; Cavanagh HD; Jester JV
    Toxicol Appl Pharmacol; 1997 Apr; 143(2):291-300. PubMed ID: 9144446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human hemoglobin denaturation as an alternative to the Draize test for predicting eye irritancy of surfactants.
    Mitjans M; Infante MR; Vinardell MP
    Regul Toxicol Pharmacol; 2008 Nov; 52(2):89-93. PubMed ID: 18602964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Demonstration of ricin-binding sites on the outer face of azurophil and specific granules of rabbit polymorphonuclear leukocytes.
    Feigenson ME; Schnebli HP; Baggiolini M
    J Cell Biol; 1975 Jul; 66(1):183-8. PubMed ID: 1141375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphometric cytochemistry of catalase and myeloperoxidase-containing granules in the rabbit polymorphonuclear leukocyte.
    Zellmer DM; Shannon WA
    Histochem J; 1983 Mar; 15(3):211-30. PubMed ID: 6303987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MTT-assay and neutral red release (NRR)-assay: relative role in the prediction of the irritancy potential of surfactants.
    Korting HC; Schindler S; Hartinger A; Kerscher M; Angerpointner T; Maibach HI
    Life Sci; 1994; 55(7):533-40. PubMed ID: 8041231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relevance of in vitro tests to in vivo acute skin inflammation: potential in vitro applications of skin keratome slices, neutrophils, fibroblasts, mast cells and macrophages.
    Parish WE
    Food Chem Toxicol; 1985 Feb; 23(2):275-85. PubMed ID: 2861150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ocular irritation: pathological changes occurring in the rat with surfactants of unknown irritancy.
    Maurer JK; Parker RD; Carr GJ
    Toxicol Pathol; 1998; 26(2):226-33. PubMed ID: 9547860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunogold localisation of ubiquitin-protein conjugates in primary (azurophilic) granules of polymorphonuclear neutrophils.
    László L; Doherty FJ; Watson A; Self T; Landon M; Lowe J; Mayer RJ
    FEBS Lett; 1991 Feb; 279(2):175-8. PubMed ID: 1848188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of secretion in the polymorphonuclear leucocyte by Concanavalin A.
    Woodin AM
    Exp Cell Res; 1975 Apr; 92(1):201-10. PubMed ID: 805705
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.