BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 7204156)

  • 1. Physiological adjustments of women to prolonged work during acute hypoxia.
    Wagner JA; Miles DS; Horvath SM
    J Appl Physiol Respir Environ Exerc Physiol; 1980 Sep; 49(3):367-73. PubMed ID: 7204156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximal work capacity of women during acute hypoxia.
    Wagner JA; Miles DS; Horvath SM; Reyburn JA
    J Appl Physiol Respir Environ Exerc Physiol; 1979 Dec; 47(6):1223-7. PubMed ID: 536293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absolute and relative work capacity in women at 758, 586, and 523 torr barometric pressure.
    Miles DS; Wagner JA; Horvath SM; Reyburn JA
    Aviat Space Environ Med; 1980 May; 51(5):439-44. PubMed ID: 6770838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cardiovascular response to exercise in humans following acclimatization to extreme altitude.
    Savard GK; Areskog NH; Saltin B
    Acta Physiol Scand; 1995 Aug; 154(4):499-509. PubMed ID: 7484176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ventilatory acclimatization to high altitude is prevented by CO2 breathing.
    Cruz JC; Reeves JT; Grover RF; Maher JT; McCullough RE; Cymerman A; Denniston JC
    Respiration; 1980; 39(3):121-30. PubMed ID: 6773122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen transport during steady-state submaximal exercise in chronic hypoxia.
    Wolfel EE; Groves BM; Brooks GA; Butterfield GE; Mazzeo RS; Moore LG; Sutton JR; Bender PR; Dahms TE; McCullough RE
    J Appl Physiol (1985); 1991 Mar; 70(3):1129-36. PubMed ID: 2032978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological adaptation of the cardiovascular system to high altitude.
    Naeije R
    Prog Cardiovasc Dis; 2010; 52(6):456-66. PubMed ID: 20417339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute hypoxia decreases cardiac response to catecholamines in exercising humans.
    Richalet JP; Mehdioui H; Rathat C; Vignon P; Keromes A; Herry JP; Sabatier C; Tanche M; Lhoste F
    Int J Sports Med; 1988 Apr; 9(2):157-62. PubMed ID: 3384521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypoxia, smoking history, and exercise.
    Wagner JA; Horvath SM; Andrew GM; Cottle WH; Bedi JF
    Aviat Space Environ Med; 1978 Jun; 49(6):785-91. PubMed ID: 656005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Operation Everest II: elevated high-altitude pulmonary resistance unresponsive to oxygen.
    Groves BM; Reeves JT; Sutton JR; Wagner PD; Cymerman A; Malconian MK; Rock PB; Young PM; Houston CS
    J Appl Physiol (1985); 1987 Aug; 63(2):521-30. PubMed ID: 3654410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of catecholamines and propranolol on the acute acclimatization to high altitude in man].
    Koller EA; Boutellier U; Ziegler WH
    Schweiz Med Wochenschr; 1983 Dec; 113(52):1989-99. PubMed ID: 6665541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maximal exercise during hypobaric hypoxia (447 Torr) in moderate-altitude natives.
    Maresh CM; Noble BJ; Robertson KL; Sime WE
    Med Sci Sports Exerc; 1983; 15(5):360-5. PubMed ID: 6645862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Operation Everest II: maximal oxygen uptake at extreme altitude.
    Cymerman A; Reeves JT; Sutton JR; Rock PB; Groves BM; Malconian MK; Young PM; Wagner PD; Houston CS
    J Appl Physiol (1985); 1989 May; 66(5):2446-53. PubMed ID: 2745305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Operation Everest II: oxygen transport during exercise at extreme simulated altitude.
    Sutton JR; Reeves JT; Wagner PD; Groves BM; Cymerman A; Malconian MK; Rock PB; Young PM; Walter SD; Houston CS
    J Appl Physiol (1985); 1988 Apr; 64(4):1309-21. PubMed ID: 3132445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maintained stroke volume but impaired arterial oxygenation in man at high altitude with supplemental CO2.
    Grover RF; Reeves JT; Maher JT; McCullough RE; Cruz JC; Denniston JC; Cymerman A
    Circ Res; 1976 May; 38(5):391-6. PubMed ID: 1269078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Operation Everest II: pulmonary gas exchange during a simulated ascent of Mt. Everest.
    Wagner PD; Sutton JR; Reeves JT; Cymerman A; Groves BM; Malconian MK
    J Appl Physiol (1985); 1987 Dec; 63(6):2348-59. PubMed ID: 3436869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climbing Mt. Everest without oxygen: an analysis of maximal exercise during extreme hypoxia.
    West JB
    Respir Physiol; 1983 Jun; 52(3):265-79. PubMed ID: 6612103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ventilation-perfusion inequality in normal humans during exercise at sea level and simulated altitude.
    Gale GE; Torre-Bueno JR; Moon RE; Saltzman HA; Wagner PD
    J Appl Physiol (1985); 1985 Mar; 58(3):978-88. PubMed ID: 2984168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adrenocortical responses to maximal exercise in moderate-altitude natives at 447 Torr.
    Maresh CM; Noble BJ; Robertson KL; Seip RL
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Feb; 56(2):482-8. PubMed ID: 6706759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen consumption, lactate accumulation, and sympathetic response during prolonged exercise under hypoxia.
    Bouissou P; Guezennec CY; Defer G; Pesquies P
    Int J Sports Med; 1987 Aug; 8(4):266-9. PubMed ID: 3667023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.